Skip to main content

Challenges in Controlling Verticillium Wilt by the Use of Nonchemical Methods

  • Chapter
  • First Online:

Part of the book series: Plant Pathology in the 21st Century ((ICPP,volume 1))

Abstract

Verticillium wilt is one of the most serious soilborne diseases worldwide. Three non-fumigant control methods that appear to have great potential for reducing losses due to wilt and other soilborne pathogens are detailed here. High nitrogen organic amendments and products containing volatile fatty acids (VFAs) can significantly reduce disease severity and inoculum density but only under specific soil conditions. Identification of the modes of action for these products provides new avenues to improve their efficacy. Broccoli amendments also effectively reduce Verticillium wilt and have great potential for use on a large scale where economics allow. Grafting susceptible cultivars onto Verticillium resistant root stocks has become widely adopted in many countries. Eggplants and tomatoes provide a good model system for testing this technology. Promising results have been obtained under diverse disease pressure and soil and climatic conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi PA, Lazarovits G, Jabaji-Hare S (2009) Detection of high concentrations of organic acids in fish emulsion and their role in pathogen or disease suppression. Phytopathology 99:274–281

    Article  CAS  PubMed  Google Scholar 

  • Abbasi PA, Conn KL, Lazarovits G (2006) Effect of fish emulsion used as a pre-plant soil amendment on Verticillium wilt, common scab, and tuber yield of potato. Can J Plant Pathol 28:509–518

    Article  Google Scholar 

  • Abbasi PA, Conn KL, Lazarovits G (2007) Managing soilborne diseases of vegetable crops with a pre-plant soil or substrate amendment of a corn distillation product. Biocontrol Sci Tech 17:331–344

    Article  Google Scholar 

  • Bailey KL, Lazarovits G (2003) Suppressing soilborne diseases with residue management and organic amendments. Soil Tillage Res 72:169–180

    Article  Google Scholar 

  • Barbara DJ, Clewes E (2003) Plant pathogenic Verticillium species: how many of them are there? Mol Plant Pathol 4:297–304

    Article  CAS  PubMed  Google Scholar 

  • Bhat RG, Subbarao KV (1999a) Green manure. In: The encyclopedia of plant pathology, vol 1, Wiley, New York, pp 519–520

    Google Scholar 

  • Bhat RG, Subbarao KV (1999b) Host range specificity in Verticillium dahliae. Phytopathology 89:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Bhat RG, Subbarao KV (2002) Reaction of broccoli to Verticillium dahliae isolates from various hosts. Plant Dis 85:141–146

    Article  Google Scholar 

  • Bjarnholt N, Laegdsmand M, Hansen HCB, Jacobsen OH, Moller BL (2008) Leaching of cyanogenic glucosides and cyanide from white clover green manure. Chemosphere 72:897–904

    Article  CAS  PubMed  Google Scholar 

  • Bletsos F, Thanassoulopoulos C, Roupakias D (2003) Effect of grafting on growth, yield, and Verticillium wilt of eggplant. HortScience 38(2):183–186

    Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Browning M, Wallace DB, Dawson C, Alm SR, Amador JA (2006) Potential of butyric acid for control of soil-borne fungal pathogens and nematodes affecting strawberries. Soil Biol Biochem 38:401–404

    CAS  Google Scholar 

  • Butler MJ, Day AW (1998) Destruction of fungal melanins by ligninases of Phanerochaete chrysosporium and other white rot fungi. International. J Plant Sci 159:989–995

    CAS  Google Scholar 

  • Catara V, Bella P, Polizzi G, Paratore A (2001) First report of bacterial stem rot caused by Pectobacterium carotovorum subsp. carotovorum and P. carotovorum subsp. atrosepticum on grafted eggplant in Italy. Plant Dis 85:921

    Article  Google Scholar 

  • Ciccarese F, Frisullo S, Cirulli M (1987) Severe outbreaks of Verticillium wilt on Cichorium intybus and Brassica rapa andpathogenic variations among isolates of Verticillium dahliae. Plant Dis 71:1144–1145

    Article  Google Scholar 

  • Cohen MF, Yamasaki H, Mazzola M (2005) Brassica napus seed meal soil amendment modifies microbial community structure, nitric oxide production and incidence of Rhizoctonia root rot. Soil Biol Biochem 37:1215–1227

    Article  CAS  Google Scholar 

  • Collins A, Okoli CAN, Morton A, Parry D, Edwards SG, Barbara DJ (2003) Isolates of Verticillium dahliae pathogenic to crucifers are of at least three distinct molecular types. Phytopathology 93:364–376

    Article  PubMed  Google Scholar 

  • Conn KL, Lazarovits G (1999) Impact of animal manures on Verticillium wilt, potato scab, and soil microbial populations. Can J Plant Pathol 21:81–92

    Google Scholar 

  • Conn KL, Lazarovits G (2000) Soil factors influencing the efficacy of liquid swine manure added to soil to kill Verticillium dahliae. Can J Plant Pathol 22:400–406

    Article  Google Scholar 

  • Conn KL, Lazarovits G (2007) Reduction of potato scab with acidified liquid swine manure soil amendment. Can J Plant Pathol 29:440

    Google Scholar 

  • Conn KL, Tenuta M, Lazarovits G (2005) Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology 95:28–35

    Article  PubMed  Google Scholar 

  • Conn KL, Topp E, Lazarovits G (2007) Factors influencing the concentration of volatile fatty acids, ammonia, and other nutrients in stored liquid pig manure. J Environ Qual 36:440–447

    Article  CAS  PubMed  Google Scholar 

  • Davis JR, Huisman OC, Westermann DT, Hafez SL, Everson DO, Sorensen LH, Schneider AT (1996) Effects of green manures on Verticillium wilt of potato. Phytopathology 86:44–453

    Google Scholar 

  • Diánez F, Díaz M, Santos M, Huitrón V, Ricárdez M, Camacho F (2007) The use of grafting in Spain. Proceedings of technical meeting on non-chemical alternatives for soil-borne pest control, Budapest, pp 87–97

    Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci 95:10328–10333

    Article  CAS  PubMed  Google Scholar 

  • Edelstein M (2004) Grafting vegetable-crop plants: pros and cons. Acta Horticulturae 659:235–238

    Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GE St. J, Sivasithamparam K (2003) Fish emulsion as a food base for rhizobacteria promoting growth of radish (Raphanus sativus L. var. sativus) in a sandy soil. Plant Soil 252:397–411

    Google Scholar 

  • Gamliel A, Stapleton JJ (1993a) Effect of chicken compost or ammonium phosphate and solarization on pathogen control, rhizosphere microorganisms, and lettuce growth. Plant Dis 77:886–891

    Article  CAS  Google Scholar 

  • Gamliel A, Stapleton JJ (1993b) Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology 83:899–905

    Article  CAS  Google Scholar 

  • Garibaldi A, Minuto A (2003) The application of grafting against soilborne pests and diseases of tomato in Italy: present situation and perspectives. Proceedings of international congress “Greenhouse tomato – Integrated crop production – Organic production”, Avignon, France, pp 55–59

    Google Scholar 

  • Garibaldi A, Minuto A, Gullino ML (2005) Verticillium wilt incited by Verticillium dahliae in eggplant grafted on Solanum torvum in Italy. Plant Dis 89:777

    Google Scholar 

  • Ginoux G, Laterrot H (1991) Greffage de l’aubergine: réflexion sur le choix du porte-greffe P.H.M. Revue Horticole 321:49–54

    Google Scholar 

  • Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, Servaes A, Sihachakr D (2005) Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci 168:319–327

    Article  CAS  Google Scholar 

  • Hao JJ, Subbarao KV, Koike ST (2003) Effects of broccoli rotation on lettuce drop caused by Sclerotinia minor and on the sclerotial population in soil. Plant Dis 87:159–166

    Article  Google Scholar 

  • Haramoto ER, Gallandt ER (2004) Brassica cover cropping for weed management: A review. Renew Agric Food Sys 19:187–198

    Article  Google Scholar 

  • Hoes JA (1971) Development of chlamydospores in Verticillium nigriscens and V. nubilum. Can J Bot 49:1863–1866

    Article  Google Scholar 

  • Isaac I, MacGarvie QD (1966) Dormancy and germination of resting structures of Verticillium spp. Trans Br Mycol Soc 49:669–678

    Article  Google Scholar 

  • Karapapa VK, Bainbridge BW, Heale JB (1997) Morphological and molecular characterisation of Verticillium longisporum comb. nov., pathogenic to oil seed rape. Mycol Res 101:1281–1297

    Article  Google Scholar 

  • Khahm EM (2005) Effect of grafting on growth, performance and yield of aubergine (Solanum melongena L) in the field and greenhouse. J Food Agric Environ 3:92–94

    Google Scholar 

  • Koike ST, Subbarao KV, Gordon TR, Davis RM, Hubbard JC (1994) Verticillium wilt of cauliflower in California. Plant Dis 78:1116–1121

    Article  Google Scholar 

  • Krikun J, Bernier CC (1990) Morphology of microsclerotia of Verticillium dahliae in roots of gramineous plants. Can J Plant Pathol 12:439–441

    Article  Google Scholar 

  • Kurata K (1994) Cultivation of grafted vegetables II. Development of grafting robots in Japan. HortScience 29:240–244

    Google Scholar 

  • Lazarovits G (2001) Management of soilborne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Can J Plant Pathol 23:1–7

    Article  Google Scholar 

  • Lazarovits G (2004) Managing soilborne plant diseases through selective soil disinfestation by a knowledge based application of soil amendments. Phytoparasitica 32:427–431

    Article  Google Scholar 

  • Lazarovits G, Tenuta M, Conn KL (2001) Organic amendments as a disease control strategy for soilborne diseases of high-value agricultural crops. Australas Plant Pathol 30:111–117

    Article  Google Scholar 

  • Lazarovits G, Conn KL, Abbasi PA, Tenuta M (2005) Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Horticulturae 698:215–225

    Google Scholar 

  • Lazarovits G, Conn KL, Abbasi PA, Soltani N, Kelly W, McMillan E, Peters RD, Drake KA (2008) Reduction of potato tuber diseases with organic soil amendments in two Prince Edward Island fields. Can J Plant Pathol 30:37–45

    Article  CAS  Google Scholar 

  • Lee JM (1994) Cultivation of grafted vegetables. Current status, grafting methods and benefits. HortScience 29:235–239

    Google Scholar 

  • Lewis JA, Papavizas GC (1971) Effect of sulfur-containing volatile compounds and vapors from cabbage decomposition on Aphanomyces euteiches. Phytopathology 61:208–214

    Article  CAS  Google Scholar 

  • Lockwood JL, Yoder OL, Bente MK (1970) Grafting eggplants on resistant rootstocks as a possible approach for control of Verticillium wilt. Plant Dis 54:846–848

    Google Scholar 

  • Lynch VM (1977) Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. J Appl Bacteriol 42:81–87

    CAS  PubMed  Google Scholar 

  • Lynch VM (1978) Production and phytotoxicity of acetic acid produced in anaerobic soils containing plant residues. Soil Biol Biochem 10:131–135

    Article  CAS  Google Scholar 

  • Mancini LM, Lazzeri L, Palmieri SJ (1997) In vitro fungitoxic activity of some glucosinolates and their enzyme-derived products toward plant pathogenic fungi. J Agric Food Chem 45:2768–2773

    Article  Google Scholar 

  • Matthiessen J, Kirkegaard J (2006) Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit Rev Plant Sci 25:235–265

    Article  CAS  Google Scholar 

  • Mayton HS, Olivier C, Vaughn SF, Loria R (1996) Correlation of fungicidal activity of Brassica species with allyl isothiocyanate production in macerated leaf tissue. Phytopathology 86:267–271

    Article  CAS  Google Scholar 

  • Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35–59

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Granatstein DM, Elfving DC, Mullinix K (2001) Suppression of specific apple root pathogens by Brassica napus seed meal amendment regardless of glucosinolate content. Phytopathology 91:673–679

    Article  CAS  PubMed  Google Scholar 

  • Mazzola M, Brown J, Izzo AD, Cohne MF (2007) Mechanism of action and efficacy of seed meal-induce pathogen suppression differ in Brassica species and time-dependent manner. Phytopathology 97:454–460

    Article  PubMed  Google Scholar 

  • Minuto A, Serges T, Nicotra G, Garibaldi A (2007) Applicazione dell’innesto erbaceo per le solanacee allevate in coltura protetta: problematiche e prospettive. Informatore fitopatologico – La difesa delle piante 57:30–36

    Google Scholar 

  • Momma N (2008) Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Jpn Agric Res Quar 42:7–12

    CAS  Google Scholar 

  • Njoroge S, Park S, Kang S, Subbarao KV (2008a) Comparative analysis of infection of broccoli and cauliflower by a GFP-tagged Verticillium dahliae isolate. (Abstr.). Phytopathology 98:S114

    Google Scholar 

  • Njoroge SMC, Riley MB, Keinath AP (2008b) Effect of incorporation of Brassica spp. residues on population densities of soilborne microorganisms and on damping-off and Fusarium wilt of watermelon. Plant Dis 92:287–294

    Article  CAS  Google Scholar 

  • Nothamann J, Ben-Yephet Y (1979) Screening of eggplant and other Solanum species for resistance to Verticillium dahliae. Plant Dis Reporter 63:70–73

    Google Scholar 

  • Oka Y, Shapira N, Fine P (2007) Control of root-knot nematodes in organic farming systems by organic amendments and soil solarization. Crop Prot 26:1556–1565

    Article  Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium wilts. CABI, New York, p 552

    Book  Google Scholar 

  • Qin Q-M, Vallad GE, Wu BM, Subbarao KV (2006) Phylogenetic analyses of phytopathogenic isolates of Verticillium. Phytopathology 96:582–592

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Villapudua J, Munnecke DE (1988) Effect of solar heating and soil amendments of cruciferous residues on Fusarium oxysporum f. sp. conglutinans and other organisms. Phytopathology 78:289–295

    Article  Google Scholar 

  • Rivero RM, Ruiz JM, Romero L (2003) Role of grafting in horticultural plants under stress conditions. J Food Agric Environ 1:70–74

    Google Scholar 

  • Scopa A, Dumontet S (2007) Soil solarization: effects on soil microbiological parameters. J Plant Nutr 30:537–547

    Article  CAS  Google Scholar 

  • Shetty KG, Subbarao KV (1999) Melanolytic activity of microorganisms and antagonism to Verticillium dahliae. Phytopathology 89 (Suppl.):S72

    Google Scholar 

  • Shetty KG, Subbarao KV, Huisman OC, Hubbard JC (2000) Mechanism of broccoli-mediated Verticillium wilt reduction in cauliflower. Phytopathology 90:305–310

    Article  CAS  PubMed  Google Scholar 

  • Subbarao KV, Hubbard JC (1996) Interactive effects of broccoli residue and temperature on Verticillium dahliae microsclerotia in soil and on wilt in cauliflower. Phytopathology 86:1303–1309

    Article  Google Scholar 

  • Subbarao KV, Chassot A, Gordon TR, Hubbard JC, Bonello P, Mullin R, Okamoto D, Davis RM, Koike ST (1995) Host range of Verticillium dahliae from cauliflower and genetic relationships and cross pathogenicities of isolates from different crops. Phytopathology 85:1105–1112

    Article  Google Scholar 

  • Subbarao KV, Hubbard JC, Koike ST (1999) Evaluation of broccoli residue incorporation into field soil for Verticillium wilt control in cauliflower. Plant Dis 83:124–129

    Article  Google Scholar 

  • Tenuta M, Lazarovits G (2002a) Ammonia and nitrous acid from nitrogenous amendments kill microsclerotia of Verticillium dahliae. Phytopathology 92:255–264

    Article  CAS  PubMed  Google Scholar 

  • Tenuta M, Lazarovits G (2002b) Identification of specific soil properties that affect the accumulation and toxicity of ammonia to Verticillium dahliae. Can J Plant Pathol 24:219–229

    Article  CAS  Google Scholar 

  • Tenuta M, Lazarovits G (2004) Soil properties associated with the variable effectiveness of meat and bone meal to kill microsclerotia of Verticillium dahliae. Appl Soil Ecol 25:219–236

    Article  Google Scholar 

  • Tenuta M, Conn KL, Lazarovits G (2002) Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology 92:548–452

    Article  CAS  PubMed  Google Scholar 

  • Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 51:227–302

    Article  Google Scholar 

  • Traka-Mavrona E, Koutsika-Sotiriou M, Pritsa T (2000) Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci Hortic 83:353–362

    Article  Google Scholar 

  • Trankner A (1992) Use of agricultural and municipal organic wastes to develop suppressiveness to plant pathogens. In: Tjamos ES, Papavizas GC, Cook RJ (eds) Biological control of plant diseases. Plenum, New York, pp 35–42

    Google Scholar 

  • Tsao PH, Oster JJ (1981) Relation of ammonia and nitrous acid to suppression of Phytophthora in soils amended with nitrogenous organic substances. Phytopathology 71:53–59

    Article  CAS  Google Scholar 

  • Vallad GE, Bhat RG, Koike ST, Subbarao KV, Ryder EJ (2005a) Weedborne reservoirs and seedborne transmission of Verticillium dahliae in lettuce. Plant Dis 89:317–324

    Article  Google Scholar 

  • Vallad GE, Qin QM, Subbarao KV (2005b) Verticillium wilt of cool season vegetable crops: their distribution, impact and management. In: Recent research developments in plant pathology. Research Signpost, Trivandrum, India, pp 189–210

    Google Scholar 

  • Warren KS (1962) Ammonia toxicity and pH. Nature 195:47–49

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm S (1951) Effect of various soil amendments on the inoculum potential of the Verticillium wilt fungus. Phytopathology 41:684–690

    Google Scholar 

  • Xiao CL, Subbarao KV, Schulbach KF, Koike ST (1998) Effects of crop rotation and irrigation on Verticillium dahliae microsclerotia in soil and wilt in cauliflower. Phytopathology 88:1046–1055

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Zhu J, Chen S, Ruan W, Miller C (2007) A novel use of anaerobically digested liquid swine manure to potentially control soybean cyst nematode. J Environ Sci Health, Part B 42:749–757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Lazarovits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lazarovits, G., Subbarao, K. (2010). Challenges in Controlling Verticillium Wilt by the Use of Nonchemical Methods. In: Gisi, U., Chet, I., Gullino, M. (eds) Recent Developments in Management of Plant Diseases. Plant Pathology in the 21st Century, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8804-9_18

Download citation

Publish with us

Policies and ethics