Skip to main content

Tracking fungi in soil with monoclonal antibodies

  • Review
  • Chapter
  • First Online:

Abstract

Species of the genus Trichoderma are ubiquitous soil-borne fungi that exhibit antagonism towards a number of economically important plant-pathogenic fungi and oomycetes. This review discusses recent developments in the use of monoclonal antibodies to detect these fungi in their natural soil environments and to quantify their population dynamics during antagonistic interactions with saprotrophic competitors in soil-based systems. Immunological approaches to detection and quantification are examined in relation to conventional plate enrichment techniques and to nucleic acid-based procedures. An example of recent research using a mAb-based assay to quantify the effects of saprotrophic competition on the growth of Trichoderma isolates in mixed species, soil-based, microcosms is presented. Future technological developments in immunoassays for tracking Trichoderma populations in soil are discussed and results presented showing the accurate detection and visualization of a plant growth-promoting isolate of T. hamatum in the rhizosphere of lettuce using mAb-based immunodiagnostic assays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbasi, P. A., Miller, S. A., Meulia, T., Hoitink, H. A. J., & Kim, J.-M. (1999). Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes by using molecular markers. Applied and Environmental Microbiology, 65, 5421–5426.

    PubMed  CAS  Google Scholar 

  • Ahmad, J. S., & Baker, R. (1988). Rhizosphere competence of benomyl tolerant mutants of Trichoderma species. Canadian Journal of Microbiology, 34, 694–696.

    Article  CAS  Google Scholar 

  • Bae, Y. S., & Knudsen, G. R. (2000). Co-transformation of Trichoderma harzianum with beta-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Applied and Environmental Microbiology, 66, 810–815.

    Article  PubMed  CAS  Google Scholar 

  • Bok, J. W., Chung, D., Balajee, S. A., Marr, K. A., Andes, D., & Nielsen, K. F., et al. (2006). GliZ, a transcriptional regulator of Gliotxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infection and Immunity, 74, 6761–6768.

    Article  PubMed  CAS  Google Scholar 

  • Breuil, C., Luck, B. T., Rossignol, L., Little, J., Echeverri, C. J., & Banerjee, S., et al. (1992). Monoclonal antibodies to Gliocladium roseum, a potential biocontrol fungus of sap-staining fungi in wood. Journal of General Microbiology, 138, 2311–2319.

    PubMed  CAS  Google Scholar 

  • Cramer, R. A., Gamcsik, M. P., Brooking, R. M., Najvar, L. K., Kirkpatrick, W. R., & Patterson, T. F., et al. (2006). Disruption of a nonribosomal peptide synthetase in Aspergillus fumigatus eliminates gliotoxin production. Eukaryotic Cell, 5, 972–980.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, F. M., & Thornton, C. R. (1995). Detection of plant invading fungi by monoclonal antibodies. In J. H. Skerrit, & R. Appels (Eds.) New diagnostics in crop sciences (pp. 151–171). Oxford, UK: CABI.

    Google Scholar 

  • Dewey, F. M., Thornton, C. R., & Gilligan, C. A. (1997). Use of monoclonal antibodies to detect, quantify and visualize fungi in soil. Advances in Botanical Research Incorporating Advances in Plant Pathology, 24, 275–308.

    Article  CAS  Google Scholar 

  • Eiland, F. (1985). Determination of adenosine triphosphate (ATP) and adenylate charge (AEC) in soil and use of adenosine nucleotides, as measures of soil microbial biomass and activity. Report no. S1777, Statens Planteavls Specialserie, Copenhagen, Denmark.

    Google Scholar 

  • Elad, Y., Chet, I., & Henis, Y. (1981). A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica, 9, 59–67.

    Google Scholar 

  • Escott, G. M., Hearn, V. M., & Adams, D. J. (1998). Inducible chitinolytic system of Aspergillus fumigatus. Microbiology, 144, 1575–1581.

    PubMed  CAS  Google Scholar 

  • Green, H., & Jensen, D. F. (1995). A tool for monitoring Trichoderma harzianum. 2. The use of a GUS transformant for ecological studies in the rhizosphere. Phytopathology, 85, 1436–1440.

    Article  CAS  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.

    Article  PubMed  CAS  Google Scholar 

  • Harman, G. E., & Kubicek, C. P. (Eds.) (1998). Trichoderma and Gliocladium: Enzymes, biological control and commercial applications. London: Taylor and Francis.

    Google Scholar 

  • Hermosa, M. R., Grondona, I., Diaz-Minguez, J. M., Iturriaga, E. A., & Monte, E. (2001). Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soil-borne fungal plant pathogens. Current Genetics, 38, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Lees, A. K., Cullen, D. W., Sullivan, L., & Nicolson, M. J. (2002). Development of conventional and quantitative real-time PCR assays for the detection and quantification of Rhizoctonia solani AG-3 in potato and soil. Plant Pathology, 51, 293–302.

    Article  CAS  Google Scholar 

  • Lumsden, R. D., Carter, J. P., Whipps, J. M., & Lynch, J. M. (1990). Comparison of biomass and viable propagule measurements in the antagonism of Trichoderma harzianum against Pythium ultimum. Soil Biology and Biochemistry, 22, 187–194.

    Article  Google Scholar 

  • Migheli, Q., Gozalez-Candelas, L., Dealessi, L., Camponogara, A., & Ramon-Vidal, D. (1998). Transformants of Trichoderma longibrachiatum overexpressing the beta-1,4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology, 88, 673–677.

    Article  PubMed  CAS  Google Scholar 

  • Pe’er, S., Barak, Z., Yarden, O., & Chet, I. (1991). Stability of Trichoderma harzianum amdS transformants in soil and rhizosphere. Soil Biology and Biochemistry, 23, 1043–1046.

    Article  CAS  Google Scholar 

  • Seaby, D. A. (1987). Infection of mushroom compost by Trichoderma species. Mushroom Journal, 179, 355–361.

    Google Scholar 

  • Sreenivasaprasad, S., & Manibhushanrao, K. (1990). Biocontrol potential of fungal antagonists Gliocladium virens and Trichoderma longibrachiatum. Journal of Plant Disease and Protection, 97, 570–579.

    Google Scholar 

  • Sreenivasaprasad, S., & Manibhushanrao, K. (1993). Efficacy of Gliocladium virens and Trichoderma longibrachiatum as biological control agents of groundnut root and stem rot diseases. International Journal of Pest Management, 39, 167–171.

    Article  Google Scholar 

  • Thornton, C. R. (2004). An immunological approach to quantifying the saprotrophic growth dynamics of Trichoderma species during antagonistic interactions with Rhizoctonia solani in a soil-less mix. Environmental Microbiology, 6, 323–334.

    Article  PubMed  Google Scholar 

  • Thornton, C. R., & Dewey, F. M. (1996). Detection of phialoconidia of Trichoderma harzianum in peat-bran by monoclonal antibody-based enzyme-linked immunosorbent assay. Mycological Research, 100, 217–222.

    Article  Google Scholar 

  • Thornton, C. R., Dewey, F. M., & Gilligan, C. A. (1993). Development of monoclonal antibody-based immunological assays for the detection of live propagules of Rhizoctonia solani in soil. Plant Pathology, 42, 763–773.

    Article  CAS  Google Scholar 

  • Thornton, C. R., Dewey, F. M., & Gilligan, C. A. (1994). Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for the detection of live propagules of Trichoderma harzianum in a peat-bran medium. Soil Biology and Biochemistry, 26, 909–920.

    Article  CAS  Google Scholar 

  • Thornton, C. R., & Gilligan, C. A. (1999). Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycological Research, 103, 443–448.

    Article  Google Scholar 

  • Thornton, C. R., Groenhof, A. C., Forrest, R., & Lamotte, R. (2004). A one-step, Immunochromatographic lateral flow device specific to Rhizoctonia solani and certain related species, and its use to detect and quantify R. solani in soil. Phytopathology, 94, 280–288.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, C. R., Pitt, D., Wakley, G. E., & Talbot, N. J. (2002). Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts. Microbiology, 148, 1263–1279.

    PubMed  CAS  Google Scholar 

  • Thornton, C. R., & Talbot, N. J. (2006). Immunofluorescence microscopy and immunogold EM for investigating fungal infections of plants. Nature Protocols, 1, 2506–2511.

    Article  PubMed  CAS  Google Scholar 

  • Thrane, C., Lubeck, M., Green, H., Degefu, Y., Allerup, S., & Thrane, U., et al. (1995). A tool for monitoring Trichoderma harzianum. 1. Transformation with the GUS gene by protoplast technology. Phytopathology, 85, 1428–1435.

    Article  CAS  Google Scholar 

  • Walsh, T. J., & Groll, A. H. (1999). Emerging fungal pathogens: evolving challenges to immunocompromised patients for the twenty-first century. Transplant Infectious Disease, 1, 247–261.

    Article  PubMed  CAS  Google Scholar 

  • Whipps, J. M. (1997). Developments in the biological control of soil-borne plant pathogens. Advances in Botanical Research, 26, 1–34.

    Article  Google Scholar 

  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Thornton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 KNPV

About this chapter

Cite this chapter

Thornton, C.R. (2007). Tracking fungi in soil with monoclonal antibodies. In: Collinge, D.B., Munk, L., Cooke, B.M. (eds) Sustainable disease management in a European context. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8780-6_14

Download citation

Publish with us

Policies and ethics