Skip to main content

Arbuscular Mycorrhizae and Alleviation of Soil Stresses on Plant Growth

  • Chapter

Abstract

Within the last decade, inventories of the soil’s productive capacity indicate severe degradation and loss of arable lands as a result of soil erosion, cultivation, salinization, over-grazing, land clearing, desertification, soil pollution, and atmospheric pollution. Large areas of land have been, and continue to be, contaminated by trace metals, and petroleum hydrocarbons. Many technologies using physical and chemical treatment methods have been developed to remediate contaminated soils. Recently, phytoremediation has been thought to provide an environmentally friendly alternative for the treatment of polluted soils. In phytoremediation of metal-contaminated soils, bioavailability and metal uptake are important factors. Among soil-plant factors controlling metal uptake, the rhizosphere flora is known to play a special role in the phyto-availability of trace elements. In this regard, arbuscular mycorrhizal fungi (AMF), which are among the most common components of soil rhizosphere flora, is of great interest to soil and environmental scientists, from a phyto-remediation and an environmental standpoint. AMF play important roles in the restoration of contaminated ecosystems and are increasingly used in many countries to improve plant nutrition and fertility of degraded land. As AMF are becoming commercially available, their use will also provide further avenues for reducing pollution from agriculture. This chapter reviews the role, the importance, and the application of AMF in ecologically remediating contaminated soils (mycorrhizoremediation). Emphasis is given to the effects of AMF on growth and yield, and on the uptake of trace metals by plants (rhizo-availability) from agricultural and metal-contaminated soils. The chapter also addresses the AMF’s potential for improving or sustaining soil fertility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Karaki, G.N., 2006, Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci. Hort. 109: 1-7.

    Google Scholar 

  • Allen, M.F., Figueroa, C., Weinbaum, B.S, Barlow, S.B., and Allen, E.B., 1996, Differ-ential production of oxalate by mycorrhizal fungi in arid ecosystems. Biol. Fert. Soils 22: 287-292.

    CAS  Google Scholar 

  • Almås, Å.R., Bakken, L.R., and Mulder, J., 2004, Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol. Biochem. 36: 805-813.

    Google Scholar 

  • Angle, J.S., Spiro, M.A., Heggo, A.M., El-Kherbawy, M., and Chaney, R.L., 1988, Soil microbial - legume interacts in heavy metal contaminated at Palmerton, PA., pp. 321-336. Trace substances in the environment health, 22nd Conference, St-Louis, MO, May 23-26.

    Google Scholar 

  • Arines, J., Vilariño, A., and Sainz, M., 1990. Effect of vesicular-arbuscular mycorrhizal fungi on Mn uptake by red clover. Agri. Ecosys. Environ. 29: 1-4.

    Google Scholar 

  • Atkinson, D.J., Baddeley, A., Goicoechea, N., Green, J., Sanchez- Díaz, M., and Watson, C.A., 2002, Arbuscular mycorrhizal fungi in low input agriculture, pp. 211-222. In S. Gianinazzi, H. Schüepp, J.M. Barea, and K. Haselwandter (Eds.), Mycorrhizal technology in agriculture: From genes to bioproducts. Birkhäuser Verlag, Basel, Switzerland.

    Google Scholar 

  • Audet, P., and Charest, C., 2006, Effects of AM colonization on “wild tobacco” plants grown in zinc-contaminated soil. Mycorrhiza 16: 277-283.

    CAS  PubMed  Google Scholar 

  • Bai, J., Lin, X., Yin, R., Zhang, H., Junhua, W., Xueming, C., and Yongming, L., 2008, The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from AS-contaminated soils. Appl. Soil Ecol. 38: 137-145.

    Google Scholar 

  • Baker, A., Brooks, R., and Reeves, R., 1988, Growing for gold… and copper… and zinc. New Sci. 1603: 44-48.

    Google Scholar 

  • Ballen, K.G., and Graham, P.H., 2002, The role of acid pH in symbiosis between plants and soil organisms, pp. 383-404. In Z. Rengel (Ed.), Handbook of plant growth - pH as the master variable. Marcel Dekker, New York.

    Google Scholar 

  • Barea, J.-M., and Jeffries, P., 1995, Arbuscular mycorrhizas in sustainable soil plant systems, pp. 521-560. In B. Hock and A. Varma (Eds.), Mycorrhiza: Structure, function, molecular biology and biotechnology. Springer, Berlin/Heidelberg, Germany.

    Google Scholar 

  • Barea, J.-M., Azcón, R., and Azcón-Aguilar, C., 2002, Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenkoek 81: 343-351.

    CAS  Google Scholar 

  • Berthelin, J., Leyval, C., and Mustin, C., 2000, Illustrations of the occurrence and diversity of mineral-microbe interactions involved in weathering of minerals, pp. 7-25. In J.D. Cotter-Howells, L.S. Campbell, E. Valsami-Jones, and M. Batchelder (Eds.), Environmental mineralogy: Microbial interactions, anthropogenic influences, contaminated land and waste management, Mineral Society Series 9. Mineral Society, London.

    Google Scholar 

  • Bi, Y.L., Li, X.L. Christie, P., Hu, Z.Q., and Wong, M.H., 2003, Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash, Chemo-sphere 50: 863-869.

    Google Scholar 

  • Biró, B., Posta, K., Füzy, A., Kadar, I., and Németh, T., 2005, Mycorrhizal functioning as part of the survival mechanisms of barley (Hordeum vulgare L.) at long-term heavy metal stress. Acta Biol. Szegedien. 49: 65-67.

    Google Scholar 

  • Boivin, M.-E.Y., Breure, A.M., Posthuma, L., and Rutgers, M., 2002, Determination of field effects of contaminants-significance of pollution-induced community tolerance. Human Ecol. Risk Assess. 8: 1035-1055.

    Google Scholar 

  • Boruvka L., and Drabek O., 2004, Heavy metal distribution between fractions of humic substances in heavy polluted soils. Plant, Soil Environ. 50: 339-345.

    CAS  Google Scholar 

  • Brady, N.C., and Weil, R.R., 2008, The nature and properties of soils. 14th Edition, Pearson Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Bradley, R., Burt, A.J., and Read, D.J., 1981, Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature 292: 335-337.

    CAS  Google Scholar 

  • Brooks, R.R., 1995, Biological systems in mineral exploration and processing. Ellis Horwood, Toronto.

    Google Scholar 

  • Brooks, R.R., 1998, Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining, CAB International, New York.

    Google Scholar 

  • Brundrett, M.C., and Abbott, L.K., 2002, Arbuscular mycorrhizas in plant communities, pp. 151-193. In K. Sivasithamparam, K. Dixon, and R.L. Barrett (Eds.), Micro-organisms in plant conservation and biodiversity. Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  • Burke, S.C., Angle, J.S., Chaney, R.L., and Cunningham, S.D., 2000, Arbuscular mycorrhizae effects on heavy metal uptake by corn. Intern. J. Phytorem. 2: 23-29.

    CAS  Google Scholar 

  • Bürkert, B., and Robson, A., 1994, Zn uptake in subterranean clover (Trifolium subterraneum L.) by 3 vesicular arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol. Biochem. 26: 1117-1124.

    Google Scholar 

  • Burleigh, S.H., Kristensen, B.K., and Bechmann, I.E., 2003, A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol. Biol. 52: 1077-1088.

    CAS  PubMed  Google Scholar 

  • Cardoso, I.M., and Kuyper, T.W., 2006, Mycorrhizas and tropical soil fertility. Agri. Ecosys. Environ. 116: 72-84.

    Google Scholar 

  • Cataldo, D.A., and Wildung, R.E., 1978, Soil and plant factors influencing the accumulation of heavy metals by plants. Environ. Health Perspect. 27: 149-159.

    CAS  PubMed  Google Scholar 

  • Cavagnaro, T.R., 2008, The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: A review. Plant Soil 304: 315-325.

    CAS  Google Scholar 

  • Cavagnaro, T.R., Jackson, L.E., Scow, K.M., and Hristova, K.R., 2007, Effects of arbuscular mycorrhizas on ammonia oxidizing bacteria in an organic farm soil. Microb. Ecol. 54: 618-626.

    CAS  PubMed  Google Scholar 

  • Chaudry, T.M., Hill, L., Khan, A.G., and Keuk, C., 1999, Colonization of iron and zinc-contaminated dumped filter cake waste by microbes, plants and associated mycorrhizae, pp. 275-283. In M.H. Wong and A.J.M. Baker (Eds.), Remediation and management of degraded land. CRC, Boca Raton, FL.

    Google Scholar 

  • Chen, B.D., Li, X.L., Tao, H.Q., Christie, P., and Wong, M.H., 2003, The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50: 839-846.

    CAS  PubMed  Google Scholar 

  • Chen, B.D., Zhu, Y.G., Duan, J., Xiao, X.Y., and Smith, S.E., 2007, Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ. Pollut. 147: 374-380.

    CAS  PubMed  Google Scholar 

  • Cheung, K.C., Zhang, J.Y., Deng, H.H., Ou, Y.K., Leung, H.M., Wu, S.C., and Wong, M.H., 2008, Interaction of higher plant (jute), electrofused bacteria and mycorrhiza on anthra-cene biodegradation. Bioresour. Technol. 99: 2148-2155.

    CAS  PubMed  Google Scholar 

  • Christie, P., Li, X.L., and Chen, B.D., 2004, Arbuscular mycorrhizas can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261: 209-217.

    CAS  Google Scholar 

  • Citterio, S., Prato, N., Fumagalli, P., Massa, N., Santagostino, A., Sgorbati, S., and Berta, G., 2005, The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59: 21-29.

    CAS  PubMed  Google Scholar 

  • Colpaert, J.V., 1998, Biological interactions: The significance of root-microbial symbioses for phytorestoration of metal-contaminated soils, pp. 75-91. In J. Vangronsveld and S. D. Cunningham (Eds.), Metal-contaminated soils: In situ inactivation and phytorestoration. Springer, New York.

    Google Scholar 

  • Cooper, K.M., and Tinker, P.B., 1978, Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulfur. New Phytol. 81: 43-52.

    CAS  Google Scholar 

  • Courchesne, F., Séguin, V., and Dufresne, A., 2001, Solid phase fractionation of metals in the rhizosphere of forest soils, pp. 189-206. In G.R. Gobran, W.W. Wenzel, and E. Lombi (Eds.), Trace elements in the rhizosphere. CRC, Boca Raton, FL.

    Google Scholar 

  • Crowley, D.E., and Alvey, S.A., 2002, Regulation of microbial processes by soil pH, pp. 351-382. In Z. Rengel (Ed.), Handbook of plant growth - pH as the master variable. Marcel Dekker, New York.

    Google Scholar 

  • Cui, M., and Nobel, P.S., 1992, Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol. 122: 643-649.

    CAS  Google Scholar 

  • Dai, J., Becquer, T., Rouiller, J.H., Reversat, G., Bernhardt-Reversat, F., and Lavelle, P., 2004, Influence of heavy metals on C and N mineralization and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl. Soil Ecol. 25: 99-109.

    Google Scholar 

  • Danielson, R.M., 1985, Mycorrhizae and reclamation of stressed terrestrial environments, pp. 173-201. In R.L. TateIII and D.A. Klein (Eds.), Soil reclamation processes - micro-biological analyses and applications. Marcel Dekker, New York.

    Google Scholar 

  • Davis, M.R.H., Zhao, F.J., and McGrath, S.P., 2004, Pollution induced community tolerance of soil microbes in response to a zinc gradient. Environ. Toxi. Chem. 23: 2665-2672.

    CAS  Google Scholar 

  • Davies, F.T., Puryear, J.D., Newton, R.J., Egilla, J.N., and Saraiva Grossi, J.A., 2001, Mycor-rhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol. 158: 777-786.

    CAS  Google Scholar 

  • Davies, F.T., Puryear, J.D., Newton, R.J., Egilla, J.N., and Saraiva Grossi, J.A., 2002, Mycorrhizal fungi increase chromium uptake by sunflower plants: Influence on tissue mineral concentration, growth, and gas exchange. J. Plant Nutri. 25: 2389-2407.

    CAS  Google Scholar 

  • Dehn, B., and Schüepp, H., 1989, Influence of VA mycorrhizae on the uptake and distribution of heavy metals in plants. Agr. Ecosyst. Environ. 29: 79-83.

    Google Scholar 

  • Del Val, C., Barea, J.M., and Azcón-Aguilar, C., 1999a, Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolates from sewage sludge-contaminated soils. Appl. Soil Ecol. 11: 261-269.

    Google Scholar 

  • Del Val, C., Barea, J.M., and Azcón-Aguilar, C., 1999b, Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl. Environ. Microbiol. 65: 718-723.

    CAS  PubMed  Google Scholar 

  • Deram, A., Languereau-Leman, F., Howsam, M., Petit, D., and Haluwyn, C.V., 2008, Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (Poaceae): Influence of mycorrhizal and endophytic fungal colonisation. Soil Biol. Biochem. 40: 845-848.

    CAS  Google Scholar 

  • Díaz, G., and Honrubia, M., 1994, A mycorrhizal survey of plants growing on mine wastes in Southeast Spain. Arid Soil Res. Rehab. 8: 59-68.

    Google Scholar 

  • Dinel, H., Pare, T., Schnitzer, M., and Pelzer, N., 2000, Direct land application of cement kiln dust- and lime-sanitized biosolids: Extractability of trace metals and organic matter quality. Geoderma 96: 307-320.

    CAS  Google Scholar 

  • Dixon, R.K., 1988, The response of ectomycorrhizal Quercus rubra to soil cadmium, nickel and lead. Soil Biol. Biochem. 20: 555-559.

    CAS  Google Scholar 

  • Dixon R.K., and Buschena, C.A., 1988, Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105: 265-271.

    CAS  Google Scholar 

  • Douds, D.D. Jr., and Millner, P.D., 1999. Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric. Ecosys. Environ. 74: 77-93.

    Google Scholar 

  • Dueck, T.A., Visser, P., Ernst, W.H.O., and Schat, H., 1986, Vesicular-arbuscular mycorrhizae decrease zinc toxicity to grasses growing in zinc-polluted soil. Soil Biol. Biochem. 18: 331-333.

    Google Scholar 

  • Duffus, J.H., 2002, Heavy Metals- A Meaningless Term. Pure Appl. Chem. 74: 793-807.

    CAS  Google Scholar 

  • Ensley, B.D., 2000, Rationale for use of phytoremediation, pp. 3-12. In I. Raskin and B.D. Ensley (Eds.), Phytoremediation of toxic metals. Using plants to clean up the environment. John, Toronto.

    Google Scholar 

  • Entry, J.A., Watrud, L.S., and Reeves, M., 1999, Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ. Pollut. 104: 449-457.

    CAS  Google Scholar 

  • Fomina, M.A., Alexander, I.J., Colpaert, J.V., and Gadd, G.M., 2005, Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol. .Biochem. 37: 851-866.

    CAS  Google Scholar 

  • Foster, J.W., and Hall, H.K., 1990, Adapative acification tolerance response of Salmonella typhimurium. J. Bacteriol. 172: 771-778.

    CAS  PubMed  Google Scholar 

  • Frostegård, Å., Tunlid, A., and Bååth, E., 1993, Phospholipid fatty-acid composition, biomass, and activity of microbial communities from 2 soil types experimentally exposed to different heavy-metals. Appl. Environ. Microbiol. 59: 3605-3617.

    PubMed  Google Scholar 

  • Gadd, G.M., 1990, Heavy metal accumulation by bacteria and other microorganisms. Experientia 46: 834-840.

    CAS  Google Scholar 

  • Gadd, G.M., 1993, Interactions of fungi with toxic metals. New Phytol. 124: 25-60.

    CAS  Google Scholar 

  • Gadd, G.M., 2000, Heterotrophic solubilization of metal-bearing minerals by fungi, pp. 57- 75. In J.D. Cotter-Howells, L.S. Campbell, E. Valsami-Jones, and M. Batchelder (Eds.), Environmental mineralogy: Microbial interactions, anthropogenic influences, contaminated land and waste management, Mineral Society Series, 9. Mineral Society, London.

    Google Scholar 

  • Gadd, G.M., 2005, Microorganisms in toxic metal-polluted soils, pp. 325-356. In F. Buscot and A. Varma (Eds.), Microorganisms in soils: Roles in genesis and functions. Part V. Book series: Soil biology, Vol. 3. Springer, Berlin/Heidelberg, Germany.

    Google Scholar 

  • Gadd, G.M., and White, C., 1989, Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, pp. 19-38. In R.K. Poole and G.M. Gadd (Eds.), Metal-microbe inter-actions. Special publication of the Society for General Microbiology, Vol. 26. IRL Press/ Oxford University Press, New York.

    Google Scholar 

  • Gaither, L.A., and Eide, D.J., 2001, Eukaryotic zinc transporters and their regulation. Biometals 14: 251-270.

    CAS  PubMed  Google Scholar 

  • Galli, U., Schüepp, H., and Brunold, C., 1994, Heavy metal binding by mycorrhizal fungi. Physiol. Plant. 92: 364-368.

    CAS  Google Scholar 

  • George, E., Häussler, K.U., Vetterlein, K.U., Gorgus, E., and Marschner, H., 1992, Water and nutrient translocation by hyphae of Glomus mosseae. Can. J. Botany. 70: 2130-2137.

    Google Scholar 

  • Giasson, P., and Jaouich, A. 1998, La phytorestauration des sols contaminés au Québec. Vecteur Environnement 31: 40-53.

    CAS  Google Scholar 

  • Giasson, P., Jaouich, A., Gagné, S., and Moutoglis, P., 2005a, Endomycorrhizae involvement in Zn and Cd speciation change and phytoaccumulation. Remediation 15: 75-81.

    Google Scholar 

  • Giasson, P., Jaouich, A., Gagné, S., and Moutoglis, P., 2005b, Phytoremediation of zinc and cadmium: A study of arbuscular mycorrhizal hyphae. Remediation 15: 113-122.

    Google Scholar 

  • Giasson, P., Jaouich, A., Gagné, S., Massicotte, L., Cayer, P., and Moutoglis, P., 2006, Enhanced phytoremediation: A study of mycorrhizoremediation of heavy metal contaminated soil. Remediation 17: 97-110.

    Google Scholar 

  • Gildon, A., and Tinker, P.B., 1981, A heavy metal tolerant strain of a mycorrhizal fungus. Trans. British Mycol. Soc. 77: 648-649.

    Google Scholar 

  • Gildon, A., and Tinker, P.B., 1983a, Interactions of vesicular-arbuscular mycorrhizal infec-tion and heavy metals in plants. 1. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol. 95: 247-261.

    CAS  Google Scholar 

  • Gildon, A., and Tinker, P.B., 1983b, Interactions of vesicular arbuscular mycorrhizal infection and heavy-metals in plants. 2. The effects of infection on uptake of copper. New Phytol. 95: 263-268.

    CAS  Google Scholar 

  • Giller, K.E., Witter, E., and McGrath, S., 1998, Toxicity of heavy metals to microorga-nisms and microbial processes in agricultural soils: A review. Soil Biol. Biochem. 30: 1389-1414.

    CAS  Google Scholar 

  • Göhre, V., and Paszkowski, U., 2006, Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223: 1115-1122.

    PubMed  Google Scholar 

  • Gonzalez-Chavez, C., D’Haen, J., Vangronsveld, J., and Dodd, J.C., 2002a, Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240: 287-297.

    CAS  Google Scholar 

  • Gonzalez-Chavez, C., Harris, P.J., Dodd, J., and Meharg, A.A., 2002b, Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol. 155: 163-171.

    CAS  Google Scholar 

  • Gonzalez-Chavez, M.C., Carrillo-Gonzalez, R., Wright, S.F., and Nichols, K.A., 2004, The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ. Pollut. 130: 317-323.

    CAS  PubMed  Google Scholar 

  • Gregory, P.J., 2006, Plant roots. growth, activity and interaction with soils. Blackwell, Oxford.

    Google Scholar 

  • Hamel, C., and Plenchette, C., 2007, Mycorrhizae in crop production. Haworth, Binghampton NY.

    Google Scholar 

  • Harrison, M.J., 2005, Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59: 19-42.

    CAS  PubMed  Google Scholar 

  • Harrison, M.J., Dewbre, G.R., and Liu, J., 2002, A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14: 2413-2429.

    CAS  PubMed  Google Scholar 

  • Hetrick, B.A.D., Wilson, G.W.T., and Figge, D.A.H., 1994, The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ. Pollut. 86: 171-179.

    CAS  PubMed  Google Scholar 

  • Hildebrandt, U., Regvar, M., and Bothe, H., 2007, Arbuscular mycorrhiza and heavy metal tolerance. Phytochem. 68: 139-146.

    CAS  Google Scholar 

  • Hinojosa, M.B., Carreira, J.A., García-Ruíz, R., and Dick, R.P., 2005, Microbial response to heavy metal-polluted soils. J. Environ. Qual. 34: 1789-1800.

    CAS  PubMed  Google Scholar 

  • Holtan-Hartvik, L., Bechman, H., Høyås, T.R., Linjordet, R., and Bakken, L.R., 2002, Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol. Biochem. 34: 1181-1190.

    Google Scholar 

  • Homer, F.A., Reeves, R.D., and Brooks, R.R., 1997, The possible involvement of aminoacids in nickel chelation in some nickel-accumulating plants. Curr. Top. Phytochem. 14: 31-33.

    Google Scholar 

  • Hovsepyan A., and Greipsson, S., 2004, Effect of arbuscular mycorrhizal fungi on phyto-extraction by corn (Zea mays) of lead-contaminated soil. Intern. J. Phytorem. 6: 305-321.

    CAS  Google Scholar 

  • Hughes, M.N., and Poole, R.K., 1989, Metal mimicry and metal limitation in studies of metal - microbe interactions, pp. 1-17. In R.K. Poole and G.M. Gadd (Eds.), Metal - microbe interactions. Society for General Microbiology, IRL Press/Oxford University Press, New York.

    Google Scholar 

  • Hutchinson, S.L., Schwab, A.P., and Banks, M.K., 2003, Biodegradation of petroleum hydrocarbons in the rhizosphere, pp. 355-386. In S.C. McCutcheon and J.L. Schnoor (Eds.), Phytoremediation. Wiley-Interscience, Hoboken, NJ.

    Google Scholar 

  • Ietswaart, J.H., Griffioen, W.A.J., and Ernst, W.H.O., 1992, Seasonality of VAM infection in three populations of Agrostis capillaries (Gramineae) on soil with or without heavy metal enrichment. Plant Soil 139: 67-73.

    CAS  Google Scholar 

  • Jackson, A.P., and Alloway, B.J., 1992, The transfer of cadmium from agricultural soils to the human food chain, pp. 109-158. In D.C. Adriano (Ed.), Biogeochemistry of trace metals. Lewis, Boca Raton, FL.

    Google Scholar 

  • Jackson, L.E., Burger, M., and Cavagnaro, T.R., 2008, Roots, nitrogen transformations, and ecosystem services. Annu. Rev. Plant Biol. 59: 341-363.

    CAS  PubMed  Google Scholar 

  • Jamal, A., Ayub, N., Usman, M., and Khan, A.G., 2002, Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. Intern. J. Phytorem. 4: 205-221.

    CAS  Google Scholar 

  • Jansa, J., Smith, F.A., and Smith, S.E., 2008, Are there benefits of simultaneous root coloni-zation by different arbuscular mycorrhizal fungi? New Phytol. 177: 779-789.

    CAS  PubMed  Google Scholar 

  • Jasper, D.A., Abbott, L.K., and Robson, A.D., 1989, Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol. 112: 101-107.

    Google Scholar 

  • Jastrow, J.D., Miller, R.M., and Lussenhop, J., 1998, Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 30: 905-916.

    CAS  Google Scholar 

  • Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J.M., 2003, The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fert. Soils 37: 1-16.

    Google Scholar 

  • Joner, E.J., and Leyval, C., 1997, Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol. 135: 353-360.

    CAS  Google Scholar 

  • Joner, E.J., Briones, R., and Leyval, C., 2000, Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226: 227-234.

    CAS  Google Scholar 

  • Jun, J., Abubaker, J., Rehrer, C. Pfeffer, P.E., Shachar-Hill, Y., and Lammers, P.J., 2002, Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cytoskeleton and the cell cycle. Plant Soil 244: 141-148.

    Google Scholar 

  • Kabata-Pendias, A., 2001, Trace elements in soils and plants. 3rd Edition, CRC, Boca Raton FL.

    Google Scholar 

  • Kabata-Pendias, A., and Mukherjee, A.B., 2007, Trace elements from soil to human. Springer, Berlin/Heidelberg, Germany/New York.

    Google Scholar 

  • Kapoor, R., and Viraraghavan, T., 1998, Biosorption of heavy metals on Aspergillus niger: Effect of pre-treatment. Bioresour. Technol. 63: 109-113.

    CAS  Google Scholar 

  • Karam, A., 2007, Métaux lourds et environnement du sol. Notes de cours. Département des sols et de génie agroalimentaire. Université Laval. Québec, Canada.

    Google Scholar 

  • Karam, A., and De Coninck, A.S., 2007, Effect of turbot residue amendment on the sorption and desorption of cadmium in an acid loamy sand soil, pp. 384-385. In Abad Chabbi (Ed.), Proceedings of the International Symposium on Organic Matter Dynamics in Agro-Ecosystems, University of Poitiers, Les Presses de l’Imprimerie Oudin Poitiers, France. ISBN 978-2-7380-1245-6.

    Google Scholar 

  • Karam, A., Côté, C., and Parent, L.É., 2003, Retention of copper in Cu-enriched organic soils, pp. 137-150. In L.-E. Parent and P. Ilnicki (Eds.), Organic soils and peat materials for sustainable agriculture. CRC LLC, Boca Raton, FL.

    Google Scholar 

  • Karanika, E.D., Voulgari, O.K., Mamolos, A.P., Alifragis, D.A., and Veresoglou, D.S., 2008, Arbuscular mycorrhizal fungi in northern Greece and influence of soil resources on their colonization. Pedobiologia: 409-418.

    Google Scholar 

  • Keller, C., McGrath, S.P., and Dunham, S.J., 2002, Trace metal leaching through a soil-grassland system after sewage sludge application. J. Environ. Qual. 31: 1550-1560.

    CAS  PubMed  Google Scholar 

  • Khan, A.G., 2006, Mycorrhizoremediation - an enhanced form of phytoremediation. J. Zhejiang Univ. Sci. B 7: 503-514.

    PubMed  Google Scholar 

  • Killham, K., and Firestone, M.K., 1983, Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal deposition. Plant Soil 72: 39-48.

    CAS  Google Scholar 

  • Kistner, C., and Parniske, M., 2002, Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci. 7: 511-518.

    CAS  PubMed  Google Scholar 

  • Kothari, S.K., Marschner, H., and Römheld, V., 1990, Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol. 116: 637-645.

    CAS  Google Scholar 

  • Kucey, R.M.N., and Janzen, H.H., 1987, Effects of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under green-house conditions. Plant Soil 104: 71-78.

    CAS  Google Scholar 

  • Kumar, P.B.A.N., Dushenkov, V., Motto, H., and Raskin, I., 1995, Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29: 1232-1238.

    CAS  Google Scholar 

  • Laheurte, F., Leyval, C., and Berthelin, J., 1990, Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9: 111-116.

    Google Scholar 

  • Lambert, D.H., and Weidensaul, T.C., 1991, Element uptake by mycorrhizal soybean from sewage-sludge-treated soil. Soil Sci. Soc. Am. J. 55: 393-398.

    CAS  Google Scholar 

  • Lasat, M.M., 2002, Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual. 31: 109-120.

    CAS  PubMed  Google Scholar 

  • Lepp, N.W., 1992, Uptake and accumulation of metals in bacteria and fungi, pp. 277-298. In D.C. Adriano (Ed.), Biogeochemistry of trace metals. Lewis, Boca Raton, FL.

    Google Scholar 

  • Leyval, C., and Joner, E.J., 2001, Bioavailability of heavy metals in the mycorrhizosphere, pp. 165-185. In G.R. Gobran, W.W. Wenzel, and E. Lombi (Eds.), Trace elements in the rhizosphere. CRC, Boca Raton, FL.

    Google Scholar 

  • Leyval, C., Berthelin, J., Schontz, D., Weissenhorn, I., and Morel, J.L., 1991, Influence of endomycorrhizas on maize uptake of Pb, Cu, Zn, and Cd applied as mineral salts or sewage sludge, pp. 204-207. In J.G. Farmer (Ed.), Heavy metals in the environment, CEP Consultants, Edinburgh, UK.

    Google Scholar 

  • Leyval, C., Turnau, K., and Haselwandter, K., 1997, Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7: 139-153.

    CAS  Google Scholar 

  • Li, X.L, Marschner, H., and George, E., 1991, Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root to shoot transport in white clover. Plant Soil 136: 49-57.

    CAS  Google Scholar 

  • Lingfei, Li., Anna, Y., and Zhiwei, Z., 2005, Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol. Ecol. 54: 367-373.

    PubMed  Google Scholar 

  • Liu, W., and Lianfeng, D., 2008, Interactions between Bt transgenic crops and arbuscular mycorrhizal fungi : A new urgent issue of soil ecology in agroecosystems. Acta Agri. Scandin. section B., Soil & Plant Science 58: 187-192.

    Google Scholar 

  • Lombi, E., Wenzel, W.W., Gobran, G.R., and Adriano, D.C., 2001, Dependency of phyto-availability of metals on indigenous and induced rhizosphere processes: A review, pp. 3-24. In G.R. Gobran, W.W. Wenzel, and E. Lombi (Eds.), Trace elements in the rhizosphere. CRC, New York.

    Google Scholar 

  • Lozet, J., and Mathieu, C., 1991, Dictionary of soil science. 2nd Edition, A.A. Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Lux, H.B., and Cumming, J.R., 2001, Mycorrhizae confer aluminium resistance to tulip-poplar seedlings. Can. J. For. Res. 31: 694-702.

    CAS  Google Scholar 

  • Ma, L.Q., and Rao, G.N., 1997, Heavy metals in the environment-chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J. Environ. Qual. 26: 259-264.

    Article  CAS  Google Scholar 

  • Marie-Victorin, F. 1964, Flore laurentienne. Les Presses de l’Université de Montréal, Montreal, Canada.

    Google Scholar 

  • Marschner, P., 2007, Plant-microbe interactions in the rhizosphere and nutrient cycling, pp. 159-182. In P. Marschner and Z. Rengel (Eds.), Nutrient cycling in terrestrial eco-systems. Part I. Book series: Soil biology, Vol. 10. Springer, Berlin/Heidelberg, Germany.

    Google Scholar 

  • Marschner, P., Jentschke, G., and Godbold, D.L., 1998, Cation exchange capacity and lead sorption in ectomycorrhizal fungi. Plant Soil 205: 93-98.

    CAS  Google Scholar 

  • Martin, F., Perotto, S., and Bonfante, P., 2007, Mycorrhizal fungi: A fungal community at the interface between soil and roots, pp. 201-236. In R. Pinton, Z. Varanini, and P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York.

    Google Scholar 

  • McGrath, S.P., 1994, Effects of heavy metals from sewage sludge on soil microbes in agricultural ecosystems, pp. 247-274. In S.M. Ross (Ed.), Toxic metals in soil-plant systems, John , Chichester, UK.

    Google Scholar 

  • McGrath, S.P., Chaudri, A.M., and Giller, K.E., 1995, Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J. Indus. Microbiol. 14: 94-104.

    CAS  Google Scholar 

  • McIntyre, T., 2003, Phytoremediation of heavy metals from soils, pp. 887-904. In D.T. Tsao (Ed.), Phytoremediation., Vol. 78. Advances in biochemical engineering biotechnology. Springer, New York.

    Google Scholar 

  • Meharg, A.A., Bailey, J., Breadmore, K., and Macnair, M.R., 1994, Biomass allocation, phosphorus nutrition and vesicular-arbuscular mycorrhizal infection in clones of  Yorkshire Fog, Holcus lanatus L. (Poaceae) that differ in their phosphate uptake kinetics and tolerance to arsenate. Plant Soil 160: 11-20.

    CAS  Google Scholar 

  • Mench, M., and Martin, E., 1991, Mobilization of cadmium and other metals from two soils by root exudates by Zea mays L., Nicotina tabacum L., and Nicotina rustica. Plant Soil 132: 187-196.

    CAS  Google Scholar 

  • Mhatre, G.N., and Pankhurst, C.E., 1997, Bioindicators to detect contamination of soils with special reference to heavy metals, pp. 349-369. In C.E. Pankhurst, B.M. Doube, and V.V.S.R. Gupta (Eds.), Biological indicators of soil health. CAB International, New York.

    Google Scholar 

  • Mohammad, M.J., Pan, W.L., and Kennedy, A.C., 1995, Wheat responses to vesicular-arbuscular mycorrhizal fungal inoculation of soils from eroded toposequence. Soil Sci. Soc. Am. J. 59: 1086-1090.

    CAS  Google Scholar 

  • Morley, G.F., and Gadd, G.M., 1995, Sorption of toxic metals by fungi and clay minerals. Mycol. Res. 99: 1429-1438.

    CAS  Google Scholar 

  • Morris, C., 1992, Academic press dictionary of science and technology. Academic, San Diego, CA.

    Google Scholar 

  • Muchovej, R.M., 2001, Importance of mycorrhizae for agriculture crops. University of Florida Extension Service. Pamphlet SS-AGR-170, 5 pp. Available on line.

    Google Scholar 

  • Mullen, M.D., Wolf, D.C., Beveridge, T.J., and Bailey, G.W., 1992, Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil Biol. Biochem. 24: 129-135.

    CAS  Google Scholar 

  • Murphy, R.T., and Levy, J.F., 1983, Production of copper oxalate by some copper tolerant fungi. Trans. British Mycol. Soc. 81: 165-168.

    CAS  Google Scholar 

  • Nadian, H., Smith, S.E., Alston, A.M., and Murray, R.S., 1997, Effects of soil compaction on plant growth, phosphorus uptake and morphological charecteristics of vesicular-arbuscular mycorrhizal colonization of Trifolium subterraneum. New Phytol. 135: 303-311.

    Google Scholar 

  • Naidu, R., Oliver, D., and McConnel, S., 2003, Heavy metal phytotoxicity in soils, pp. 235-241. In A. Langley, M. Gilbey, and B. Kennedy (Eds), Proceedings of the Fifth National Workshop on the Assesment of Site Contamination. National Environment Protection Council (NEPC), Adelaide, Australia.

    Google Scholar 

  • NikliĔska, M., Chodak, M., and Laskowski, R., 2006, Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl. Soil Ecol. 32: 265-272.

    Google Scholar 

  • Orlowska, E., Zubek, Sz, Jurkiewicz, A., Szarek-Lukaszewska, G., and Turnau, K., 2002, Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12: 153-160.

    CAS  PubMed  Google Scholar 

  • Ouziad, F., Hildebrandt, U., Schmelzer, E., and Bothe, H., 2005, Differential gene expres-sions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J. Plant Physiol. 162: 634-649.

    CAS  PubMed  Google Scholar 

  • Pandolfini, T., Gremigni, P., and Gabbrielli, R., 1997, Biomonitoring of soil health by plants, pp. 325-347. In C.E. Pankhurst, B.M. Doube, and V.V.S.R. Gupta (Eds.), Biological indicators of soil health. CAB International, New York.

    Google Scholar 

  • Paszkowski, U., 2006, A journey through signaling in arbuscular mycorrhizal symbioses 2006. New Phytol. 172: 35-46.

    CAS  PubMed  Google Scholar 

  • Pawlowska, T.E., Blaszkowski, J., and Ruhling, A., 1996, The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6: 499-505.

    Google Scholar 

  • Phipps, D.A., 1981, Chemistry and biochemistry of trace metals in biological systems. In N. W. Lepp (Ed.), Effect of heavy metal pollution on plants. Applied Science Publishers, Barking, UK.

    Google Scholar 

  • Pichtel, J., and Salt, C.A., 1998, Vegetative growth and trace metal accumulation on metalliferous wastes. J. Environ. Qual. 27: 618-624.

    Article  CAS  Google Scholar 

  • Piotrowski, J.S., Morford, S.L., and Rillig, M.C., 2008, Inhibition of colonization by a native arbuscular mycorrhizal fungal community via Populus trichocarpa litter, litter extract, and soluble phenolic compounds. Soil Biol. Biochem. 40: 709-717.

    CAS  Google Scholar 

  • Rand, G.M., Wells, P.G., and McCarty, L.S., 1995, Introduction to aquatic toxicology, pp. 3-67. In G.M. Rand (Ed.), Fundamentals of aquatic toxicology. Taylor & Francis, Washington, DC.

    Google Scholar 

  • Rayner, M.H., and Sadler, P.J., 1989, Cadmium accumulation and resistance mechanisms in bacteria, pp. 39-47. In R.K. Poole and G.M. Gadd (Eds.), Metal - microbe interactions. Society for General Microbiology, IRL Press/Oxford University Press, New York.

    Google Scholar 

  • Roesti, D., Ineichen,K., Braissant, O., Redecker, D., Wiemken, A., and Aragno, M., 2005, Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl. Environ. Microbiol. 71: 6673-6679.

    Google Scholar 

  • Rufyikiri, G., Thiry, Y., Wang, L., Delvaux, B., and Declerck, S., 2002, Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions. New Phytol. 156: 275-281.

    CAS  Google Scholar 

  • Rufyikiri, G., Thiry, Y., and Declerck, S., 2003, Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions. New Phytol. 158: 391-399.

    CAS  Google Scholar 

  • Sabrana, C., Avio, L., and Giovannetti, M., 1995, The occurrence of calcofluor and lectin-binding polysaccharides in the outer wall of arbuscular mycorrhizal fungal spores. Mycol. Res. 99: 1249-1252.

    Google Scholar 

  • Salido, A.L., Hasty, K.L., Lim, J.-M., and Butcher, D.J., 2003, Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int. J. Phytoremed. 5: 89-103.

    CAS  Google Scholar 

  • Salt, D.E., Prince, R.C., Baker, A.J.M., Raskin, I, and Pickering I.J., 1999, Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol. 33: 713-717.

    CAS  Google Scholar 

  • Schnoor, J.L. 1997, Phytoremediation. Ground-Water Remediation Technologies Analysis Center, Technology Evaluation Report TE-98-01, Pittsburgh, PA.

    Google Scholar 

  • Schüßler, A., Schwarzott, D., and Walker, C., 2001, A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 105: 1413-1421.

    Google Scholar 

  • Shetty, K.G., Hetrick, B.A.D., Figge, D.A.H., and Schwab, A.P., 1994, Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ. Pollut. 86: 181-188.

    CAS  PubMed  Google Scholar 

  • Siddiqui, Z.A., 2006, PGPR: Biocontrol and Biofertilization. Springer, The Netherlands.

    Google Scholar 

  • Silver, S., Laddaga, R.A., and Misra, T.K., 1989, Plasmid-determined resistance to metal ions, pp. 49-63. In R.K. Poole and G.M. Gadd (Eds.), Metal - microbe interactions. Society for General Microbiology, IRL Press/Oxford University Press, New York.

    Google Scholar 

  • Singh, H., 2006, Mycorrhizal fungi in rhizosophere bioremediation, pp. 533-572. In H. Singh (Ed.), Mycoremediation: Fungal bioremediation. John, New York.

    Google Scholar 

  • Smith, M.R., Charvat, I., and Jacobson, R.L., 1998, Arbuscular mycorrhizae promote esta-blishment of prairie species in a tallgrass prairie restoration. Can. J. Bot. 76: 1947-1954.

    Google Scholar 

  • Smith, R.A.H., and Bradshaw, A.D., 1979, The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J. Appl. Ecol. 16: 595-612.

    CAS  Google Scholar 

  • Smith, S.E. and Read, D.J., 1997, Mycorrhizal symbiosis. 2nd Edition, Academic, London.

    Google Scholar 

  • Sudová, R., and Vosátka, M., 2007, Differences in the effects of three arbuscular mycorrhizal fungal on P and Pb accumulation by maize plants. Plant Soil 296: 77-83.

    Google Scholar 

  • Sudová, R., Jurkiewicz, A., Turnau, K., and Vosátka, M., 2007, Persistence of heavy metal tolerance of the arbuscular mycorrhizal fungus Glomus intraradices under different cultivation regimes. Symbiosis 43: 71-81.

    Google Scholar 

  • Sweatt, M.R., and Davis, F.T. Jr., 1984, Mycorrhizae, water relations, growth, and nutrient uptake of geranium grown under moderately high phosphorus regimes. J. Am. Soc. Horti. Sci. 109: 210-213.

    Google Scholar 

  • Tessier, A., Campbell, P.G.C., and Bisson, M., 1979, Sequential extraction procedure for the speciation of particulate trace metals. Analy. Chem. 51: 844-851.

    CAS  Google Scholar 

  • Thomas, R.S., Franson, R.L., and Bethlenfalvay, G.J., 1993, Separation of vesicular-arbuscular mycorrhizal fungus and root effects on soil aggregation. Soil Sci. Soc. Am. J. 57: 77-81.

    Google Scholar 

  • Toler, H.D., Morton, J.B., and Cumming, J.R., 2005, Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Poll. 164: 155-172.

    CAS  Google Scholar 

  • Toljander, J., 2006, Interactions between soil bacteria and arbuscular mycorrhizal fungi. Doctoral dissertation, Department of Forest Mycology and Pathology, Faculty of Natural Resources and Agricultural Sciences, SLU. Acta Universitatis Agriculturae Sueciae, Vol. 39.

    Google Scholar 

  • Tosun, H., and Gönül, S.A., 2005, The effect of acid adaptation conditions on acid tolerance response of Escherichia coli 0157:H7. Turk. J. Biol. 29: 197-202.

    Google Scholar 

  • Tullio, M., Pierandrei, F., Salerno, A., and Rea, E., 2003, Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol. Fert. Soils 37: 211-214.

    CAS  Google Scholar 

  • Turnau, K., and Mesjasz-Przybylowicz, J., 2003, Arbuscular mycorrhizal of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13: 185-190.

    PubMed  Google Scholar 

  • Turnau, K., Kottke, I., and Oberwinkler, F., 1993, Element localisation in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. New Phytol. 123: 313-324.

    CAS  Google Scholar 

  • Varma, A., and Hock, B., 1999, Mycorrhiza: Structure, function, molecular biology, and biotechnology. 2nd Edition, Springer, New York.

    Google Scholar 

  • Voegelin, A., Barmettler, K., and Kretzschmar, R. 2003, Heavy metal release from contami-nated soils: Comparison of column leaching and batch extraction results. J. Environ. Qual. 32: 865-875.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., and Qiu, Y.L. 2006, Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299-363.

    CAS  PubMed  Google Scholar 

  • Wang, F., Lin, X., and Yin, R., 2005, Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269: 225-232.

    CAS  Google Scholar 

  • Weissenhorn, I., and Leyval, C., 1995, Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175: 233-238.

    CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., and Berthelin, J., 1993, Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy metal-polluted soils. Plant Soil 157: 247-256.

    CAS  Google Scholar 

  • Weissenhorn, I., Glashoff, A., Leyval, C., and Berthelin, J., 1994, Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal polluted and unpolluted soils. Plant Soil 167: 189-196.

    CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., Belgy, G., and Berthelin, J., 1995a, Arbuscular mycorrhizal contribution to heavy metals uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5: 245-251.

    CAS  Google Scholar 

  • Weissenhorn, I., Leyval, C., and Berthelin, J., 1995b, Bioavailablility of heavy metals and arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol. Fert. Soils 79: 2228.

    Google Scholar 

  • Weissenhorn, I., Mench, M., and Leyval, C., 1995c, Bioavailability of heavy metals and abundance of arbuscular mycorrhizas in a sewage sludge amended sandy soil. Soil Biol. Biochem. 27: 287-296.

    CAS  Google Scholar 

  • Wilkins, D.A., 1991, The influence of sheathing (ecto-) mycorrhizas of tree on the uptake and toxicity of metals. Agricul. Ecosys. Environ. 35: 245-260.

    CAS  Google Scholar 

  • Zayed, A., Pilon-Smits, E., Desouza, M., Lin, Z-Q., and Terry, N., 2000, Remediation of selenium-polluted soils and waters by phytovolatilization, pp. 61-83. In N. Terry and G. Banuelos (Eds.), Phytoremediation of contaminated soil and water. CRC LLC, New York.

    Google Scholar 

  • Zhou, J.L., 1999, Zn biosorption by Rhizopus arrhizus and other fungi. Appl. Microbiol. Biotechnol. 51: 686-693.

    CAS  Google Scholar 

  • Zhu, Y.G., Christie, P., and Laidlaw, A.S., 2001, Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42: 193-199.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Giasson, P., Karam, A., Jaouich, A. (2008). Arbuscular Mycorrhizae and Alleviation of Soil Stresses on Plant Growth. In: Siddiqui, Z.A., Akhtar, M.S., Futai, K. (eds) Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8770-7_4

Download citation

Publish with us

Policies and ethics