Skip to main content

Lewis Acid-Catalysed Aldol Reactions

Titanium Lewis Acids

  • Chapter
Aldol Reactions

Mukaiyama and coworkers were the first to demonstrate the utility of titanium Lewis acids in aldol additions. In their initial experiments they used titanium(IV) chloride in catalytic amounts in aldol reactions with silyl enol ethers.1,2,3 These initial findings were subsequently generalized and optimized in the following time. Numerous publications described the design of highly effective chiral titanium Lewis acids in enantioselective Mukaiyama reactions. Ab initio calculations were employed to investigate the mechanism of Lewis acid-catalysed Mukaiyama reactions.4 This important development was the object of several comprehensive revi ews.5,6,7,8,9,10,11,12,13,14,15,16 For that reasons only selected and latest examples should illustrate this development.

Optical active binaphthol is one of the most frequently applied ligands in the synthesis of chiral titanium Lewis acids. Reetz and coworkers were the first to report enantioselective Mukaiyama aldol reactions catalysed by modified BINOL—titanium(IV) complexes.17 These findings were optimized for acetate aldol additions. When used with 5 mol% of this so-called Mikami catalyst18 the expected β-hydroxy carboxylic esters were obtained with a high degree of enantioselectivity (Scheme 3.1.1.1).19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mukaiyama T, Banno K, Narasaka K (1974) J Am Chem Soc 96:7503

    Article  CAS  Google Scholar 

  2. Kitazawa E, Imamura T, Saigo K, Mukaiyama T (1975) Chem Lett 6:569

    Article  Google Scholar 

  3. Banno K, Mukaiyama T (1975) Chem Lett 7:741

    Article  Google Scholar 

  4. Wong CT, Wong MW (2007) J Org Chem 72:1425

    Article  CAS  Google Scholar 

  5. Mukaiyama T (1999) Tetrahedron 55:8609

    Article  CAS  Google Scholar 

  6. Duthaler RO, Hafner A (1992) Chem Rev 92:807

    Article  CAS  Google Scholar 

  7. Gennari C (1993) In: Comprehensive Organic Synthesis, Trost BM, Fleming I, Heathcock CH (eds). Pergamon, Oxford, vol 2, p 629

    Google Scholar 

  8. Braun W (1996) In: Houben-Weyl — Methoden der Organischen Chemie, Helmchen G, Hoffmann RW, Mulzer J, Schaumann E (eds). Thieme, Stuttgart, vol E21b, p 1603

    Google Scholar 

  9. Nelson SG (1998) Tetrahedron: Asymm 9:357

    Article  CAS  Google Scholar 

  10. Carreira EM (2000) In: Lewis Acids in Organic Synthesis, Yamamoto H (ed). Wiley-VCH, Weinheim, vol 1, p 227

    Google Scholar 

  11. Carreira EM, Singer RA (1996) Drug Discovery Today 1:145

    Article  CAS  Google Scholar 

  12. Urabe H, Sato F (2000) In: Lewis Acids in Organic Synthesis, Yamamoto H (ed). Wiley-VCH, Weinheim, vol 2, p 653

    Chapter  Google Scholar 

  13. Mikami K, Terada M (2000) In: Lewis Acids in Organic Synthesis, Yamamoto H (ed). Wiley-VCH, Weinheim, vol 2, p 799

    Chapter  Google Scholar 

  14. Soriente A, De Rosa M, Villano R, Scettri A (2004) Curr Org Chem 8:993

    Article  CAS  Google Scholar 

  15. Mikami K, Matsumoto Y, Shiono T (2003) In: Science of Synthesis, Bellus D, Jacobsen NE, Ley SV, Noyori R, Regitz M, Reider PJ, Schaumann E, Shinkai I, Thomas EJ, Trost BM (eds). Thieme, Stuttgart, vol 2, p 457

    Google Scholar 

  16. Yuan Y, Ding K, Chen G (2008) In: Acid Catalysis in Modern Organic Synthesis. Yamamoto H and Ishihara K (eds) Wiley, Weinheim, vol 2, p 739

    Google Scholar 

  17. Reetz MT, Kyong SH, Bolm C, Zierke T (1986) Chem Ind 824

    Google Scholar 

  18. Mikami K, Matsukawa S, Kayaki Y, Ikariya T (2000) Tetrahedron Lett 41:1931

    Article  CAS  Google Scholar 

  19. Zimmer R, Peritz A, Czerwonka R, Schefzig L, Reissig HU (2002) Eur J Org Chem 3419

    Google Scholar 

  20. Zimmer R, Schefzig L, Peritz A, Dekaris V, Reissig HU (2004) Synthesis 1439

    Google Scholar 

  21. De Rosa M, Dell'Aglio R, Soriente A, Scettri A (1999) Tetrahedron: Asymm 10:3659

    Article  Google Scholar 

  22. De Rosa M, Soriente A, Scettri A (2000) Tetrahedron: Asymm 11:3187

    Article  Google Scholar 

  23. De Rosa M, Acocella MR, Villano R, Soriente A, Scettri A (2003) Tetrahedron: Asymm 14:2499

    Article  Google Scholar 

  24. De Rosa M, Acocella MR, Soriente A, Scettri A (2001) Tetrahedron: Asymm 12:1529

    Article  Google Scholar 

  25. De Rosa M, Acocella MR, Villano R, Soriente A, Scettri A (2003) Tetrahedron Lett 44:6087

    Article  Google Scholar 

  26. Soriente A, De Rosa M, Villano R, Scettri A (2000) Tetrahedron:Asymm 11:2255

    Article  CAS  Google Scholar 

  27. Soriente A, De Rosa M, Stanzione M, Villano R, Scettri A (2001)Tetrahedron: Asymm 12:959

    Article  CAS  Google Scholar 

  28. Heumann LV, Keck GE (2007) Org Lett 9:4275

    Article  CAS  Google Scholar 

  29. Mikami K, Matsukawa S (1993) J Am Chem Soc 115:7039

    Article  CAS  Google Scholar 

  30. Ishii A, Kojima J, Mikami K (1999) Org Lett 1:2013

    Article  CAS  Google Scholar 

  31. Mikami K, Matsukawa S (1994) J Am Chem Soc 116:4077

    Article  CAS  Google Scholar 

  32. Keck GE, Krishnamurthy D (1995) J Am Chem Soc 117:2363

    Article  CAS  Google Scholar 

  33. Nelson SG (1998) Tetrahedron: Asymm 9:357

    Article  CAS  Google Scholar 

  34. Sato M, Sunami S, Sugita Y, Kaneko C (1995) Heterocycles 41:1435

    Article  CAS  Google Scholar 

  35. (a) Brodmann T, Lorenz M, Schäckel R, Simsek S, Kalesse M (2009) Synlett 174;

    Google Scholar 

  36. (b) Kalesse M (2005) Top Curr Chem 244:43;

    CAS  Google Scholar 

  37. (c) Hosokawa S, Tatsuta K (2008) Mini-Rev Org Chem 5:1;

    Article  CAS  Google Scholar 

  38. (d) Denmark SE, Heemstra JR Jr, Beutner GL (2005) Angew Chem Int Ed 44:4682;

    Article  CAS  Google Scholar 

  39. (e) Casiraghi G, Zanardi F, Appendino G, Rassu G (2000) Chem Rev 100:1929

    Article  CAS  Google Scholar 

  40. Carreira EM, Singer RA, Lee W (1994) J Am Chem Soc 116:8837

    Article  CAS  Google Scholar 

  41. Schetter B, Mahrwald R (2006) Angew Chem Int Ed 45:7506

    Article  CAS  Google Scholar 

  42. Singer RA, Carreira EM (1995) J Am Chem Soc 117:12360

    Article  CAS  Google Scholar 

  43. Ishimaru K, Monda K, Yamamoto Y, Akiba KY (1998) Tetrahedron Lett 54:727

    CAS  Google Scholar 

  44. Hayashi M, Yoshimoto K, Hirata N, Tanaka K, Oguni N, Harada K, Matsushita A, Kawachi Y, Sasaki H (2001) Isr J Chem 41:241

    Article  CAS  Google Scholar 

  45. Morohashi N, Hattori T, Yokomakura K, Kabuto C, Miyano S (2002) Tetrahedron Lett 43:7769

    Article  CAS  Google Scholar 

  46. Kawase T, Takizawa S, Jayaprakash D, Sasai H (2004) Synth Commun 34:4487

    Article  CAS  Google Scholar 

  47. Schetter B, Stosiek C, Ziemer B, Mahrwald R (2007) Appl Organomet Chem 21:139

    Article  CAS  Google Scholar 

  48. Schetter B, Mahrwald R (2006) Org Lett 8:281

    Article  Google Scholar 

  49. Fan Q, Lin L, Liu J, Huang Y, Feng X (2005) Eur J Org Chem 3542

    Google Scholar 

  50. Rychnovsky SD, Khire UR, Yang G (1997) J Am Chem Soc 119:2058

    Article  CAS  Google Scholar 

  51. Kim Y, Singer RA, Carreira EM (1998) Angew Chem Int Ed Engl 37:1261

    Article  CAS  Google Scholar 

  52. Sinz CJ, Rychnovsky SD (2002) Tetrahedron 58:6561

    Article  CAS  Google Scholar 

  53. Szlosek M, Peyrat JF, Chaboche S, Franck X, Hocquemiller R, Figadere B (2000) New J Chem 24:337

    Article  CAS  Google Scholar 

  54. Crimmins MT, She J (2004) J Am Chem Soc 126:12790

    Article  CAS  Google Scholar 

  55. (a) Smith, AB III, Verhoest PR, Minbiole KP, Lim JJ (1999) Org Lett 1:909;

    Article  CAS  Google Scholar 

  56. (b) Smith AB III, Minbiole KP, Verhoest PR, Schelhaas M (2001) J Am Chem Soc 123:10942

    Article  CAS  Google Scholar 

  57. Li DR, Zhang DH, Sun CY, Zhang JW, Yang L, Chen J, Liu B, Su C, Zhou WS, Lin GQ (2006) Chem Eur J 12:1185

    Article  CAS  Google Scholar 

  58. Singer RA, Carreira EM (1997) Tetrahedron Lett 38:927

    Article  CAS  Google Scholar 

  59. Myers AG, Hogan PC, Hurd AR, Goldberg SD (2002) Angew Chem Int Ed 41:1062

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2009). Lewis Acid-Catalysed Aldol Reactions. In: Mahrwald, R. (eds) Aldol Reactions. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8701-1_8

Download citation

Publish with us

Policies and ethics