Skip to main content

Principles of Cloud and Precipitation Formation

  • Chapter
Aerosol Pollution Impact on Precipitation

Abstract

In this chapter we provide an overview of the basic physical processes responsible for the formation of clouds and precipitation. A number of important concepts are discussed, and terms defined, which will be used in later chapters. For more detail on these topics the reader is referred to textbooks by Pruppacher and Klett (1997), Rogers and Yau (1989), relevant chapters in Wallace and Hobbs (2006), Cotton and Anthes (1989), and Houze (1993) and review articles by Stewart (1985) and Cantrell and Heymsfield (2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Hegg, D.A., P.V. Hobbs, and L.F. Radke, Observations of the modification of cloud condensation nuclei in wave clouds, J. Rech. Atmos., 14, 217–222, 1980.

    Google Scholar 

  • Twomey, S., On the composition of cloud nuclei in the northeastern United States, J. de Rech. Atmos., 3, 281–285, 1968.

    Google Scholar 

  • Browning, K.A., and F.H. Ludlam, Airflow in convective storms, Q. J. Roy. Meteor. Soc., 88, 117–135, 1962.

    Google Scholar 

  • Vali, G., M. Christensen, R.W. Fresch, E.L. Galyan, L.R. Maki, and R.C. Schnell, Biogenic ice nuclei. II: Bacterial sources, J.Atmos. Sci., 33, 1565–1570, 1976.

    Google Scholar 

  • Cotton, W.R., Numerical simulation of precipitation development in supercooled cumuli. Part I: Mon. Wea. Rev., 11, 757–763, 1972a.

    Google Scholar 

  • Gras, J.L., Cloud condensation nuclei over the southern-ocean, Geophys. Res. Lett, 17, 1565–1567, 1990.

    Google Scholar 

  • DeMott, P.J., Laboratory studies of cirrus cloud processes, Chp 5, in Cirrus, edited by D.K. Lynch, K, Sassen, D.O.C. Starr, and G. Stephens, Oxford University Press, New York, 2002.

    Google Scholar 

  • Vaillancourt, P.A., M.K. Yau, P. Bartello, and W.W. Grabowski, Microscopic approach to cloud droplet growth by condensation. Part II: Turbulence, clustering, and condensational growth, J. Atmos. Sci., 59, 3421–3435, 2002.

    Google Scholar 

  • Fletcher, N.H., The Phys. of Rainclouds, 242 pp., Cambridge University Press, Cambridge, UK, 1962.

    Google Scholar 

  • Hobbs, P.V., Ice Physics, p. 837, Clarendon Press, Oxford, Clarendon, 1974.

    Google Scholar 

  • Houze, Jr., R.A., W. Schmid, RG. Fovell, and H.H. Shiesser, Hailstorms in Switzerland: Left movers, right movers, and false hooks, Mon. Wea. Rev., 121, 3345–3370, 1993.

    Google Scholar 

  • DeMott P.J., D.J. Cziczo, A.J. Prenni, D.M. Murphy, S.M. Kreidenweis, D.S. Thomson, R. Borys, and D.C. Rogers, Measurements of the concentration and composition of nuclei for cirrus formation, Proc. Natnl. Acad. Sci., 100(25), 14,655–14,660, 2003b

    CAS  Google Scholar 

  • Baker, M.B., R.G. Corbin, and J. Latham, The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581–598, 1980.

    Google Scholar 

  • Rogers, D.C., P.J. DeMott, S.M. Kreidenweis, Y. Chen, Measurements of ice nucleating aerosols during SUCCESS, Geophys. Res. Letters, 25, 9, 1383–1386, 1998.

    CAS  Google Scholar 

  • Hoppel, W.A., G.M. Frick, and R.E. Larson, Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer, Geophys. Res. Lett., 13, 125–128, 1986.

    Google Scholar 

  • Barkstrom, B.R., Some effects of 8–12 um radiant energy transfer on the mass and heat budgets of cloud droplets, J. Atmos. Sci., 35, 665–673, 1978.

    Google Scholar 

  • Georgi, H.W., and E. Kleinjung, Relations between the chemical composition of atmospheric aerosol particles and the concentration of natural ice nuclei, J. Rech. Atmos., 3, 145–156, 1968.

    Google Scholar 

  • Wegener, A., Thermodynamik der Atmosphäre, J.A. Barth, Leipzig, 1911.

    Google Scholar 

  • Woodcock, A.H., Salt nuclei in marine air as a function of altitude and wind force, J. Meteor., 10, 362–371, 1953.

    Google Scholar 

  • van den Heever, S., and W.R. Cotton, Urban aerosol impacts on downwind convective storms, J. Appl. Meteor. Climat., 46, 828–850, 2007.

    Google Scholar 

  • Warner, J., A reduction of rain associated with smoke from sugar-cane fires – An inadvertent weather modification, J. App. Meteor., 7, 247–251, 1968.

    Google Scholar 

  • Beard, K.V., and H.T. Ochs, III, Warm-rain initiation: An overview of microphysical mechanisms, J. Appl. Meteor., 32, 608–625, 1993.

    Google Scholar 

  • Kreidenweis, S.M., C. Walcek, C.H. Kim, G. Feingold, W. Gong, M.Z. Jacobson, X. Liu, J. Penner, A. Nenes, and J.H. Seinfeld, Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds: Comparisons of several models, J. Geophys. Res., 108, D7, 4213, doi:10.1029/2002JD002697, 2003.

    Google Scholar 

  • Cooper, W.A. and G. Vali, The origin of ice in mountain cap clouds, J. Atmos. Sci., 38, 1244–1259, 1981.

    Google Scholar 

  • Marwitz, J.D., Precipitation efficiency of thunderstorms on the high plains, J. Rech. Atmos., 6, 367–370, 1972.

    Google Scholar 

  • Prenni, A.J., J.Y. Harrington, M. Tjernström, P.J. DeMott, A. Avramov, C.N. Long, S.M. Kreidenweis, P.Q. Olsson, and J. Verlinde, Can Ice-Nucleating Aerosols Affect Arctic Seasonal Climate? Bull. Amer. Meteor. Soc., 88, 541–550, 2007.

    Google Scholar 

  • Feingold, G., W.R. Cotton, S.M. Kreidenweis, and J.T. Davis, The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties, J. Atmos. Sci., 56, 4100–4117, 1999.

    Google Scholar 

  • Mossop, S.C., and J. Hallett, Ice crystal concentration in cumulus clouds: Influence of the drop spectrum, Science, 186, 632–634, 1974.

    CAS  Google Scholar 

  • Pandis, S.N., L.M. Russell, and J.H. Seinfeld, The relationship between DMS flux and CCN concentration in remote marine regions, J. Geophys. Res., 99, 16,945–16,957, 1994.

    CAS  Google Scholar 

  • Huffman, P.J. and G. Vali, The effect of vapour depletion on ice nucleus measurements with membrane filters, J. Appl. Meteor., 12, 1018–1024, 1973.

    Google Scholar 

  • Mossop, S.C., Concentrations of Ice Crystals in Clouds, Bull. of Amer. Meteor. Soc., 51, 474–480, 1970.

    Google Scholar 

  • Hegg, D.A., and P.V. Hobbs, Cloud water chemistry and the production of sulfates in clouds, Atmos. Environ., 15, 1597–1604, 1981.

    CAS  Google Scholar 

  • Charlson, R.J., J.E. Lovelock, M.O. Andreae, and S.G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo, and climate, Nature, 326, 655–661, 1987.

    CAS  Google Scholar 

  • Hegg, D.A., The influence of liquid-phase oxidation of SO2 in the troposphere, J. Geophys. Res., 99, 3773–3779, 1985.

    Google Scholar 

  • Hudson, J.G., and S.S. Yum, Droplet spectral broadening in marine stratus, J. Atmos. Sci., 54, 2642–2654, 1997.

    Google Scholar 

  • Pitter, R.L., and H.R. Pruppacher, A wind tunnel investigation of freezing of small water drops falling at terminal velocity in air, Q. J. Roy. Meteor. Soc., 99, 540–550, 1973.

    Google Scholar 

  • Johnson, D.B., The role of giant and ultragiant aerosol particles in warm rain initiation, J. Atmos. Sci., 39, 448–460, 1982.

    Google Scholar 

  • Cotton, R.J., and P.R. Field, Ice nucleation characteristics of an isolated wave cloud, Q.J. Roy. Met. Soc., 128, 2417–2437, 2002.

    Google Scholar 

  • Johnson, D.B., Ultragiant urban aerosol particles, Science, 194, 941–942, 1976.

    CAS  Google Scholar 

  • Doswell, C.A., H.E. Brooks, and R.A. Maddox, Flash flood forecasting: An ingredients-based methodology, Wea. Forecasting, 11, 560–581, 1996.

    Google Scholar 

  • Koenig, L.R., and F.W. Murray, Ice-bearing cumulus cloud evolution: Numerical simulations and general comparison against observations, J. Appl. Meteor., 15, 747–762, 1976.

    Google Scholar 

  • Stith, J.L., D.A. Burrows, P.J. DeMott, Initiation of ice: Comparison of numerical model results with observations of ice development in a cumulu cloud, Atmos. Environ., 32, 13–30, 1994.

    Google Scholar 

  • Foote, G.B., A study of hail growth utilizing observed storm conditions, J. Climate Appl. Meteor., 23, 84–101, 1984.

    Google Scholar 

  • Hobbs, P.V., T.J. Matejka, P.H. Herzegh, J.D. Locatelli, and R.A. Houze, The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cycles. I: A case of a cold front, J. Atmos. Sci., 37, 568–596, 1980.

    Google Scholar 

  • Ayers, G.P., and J.L. Gras, Seasonal relationship between cloud condensation nuclei and aerosol methanesulfonate in marine air, Nature, 351, 834–835, 1991.

    Google Scholar 

  • Hobbs, R.I., and W.A. Cooper, Field evidence supporting qauntitative predictions of secondary ice production rates, J. Atmos. Sci., 44, 1071–1082, 1987

    Google Scholar 

  • Durant, A.J. and R.A. Shaw. Evaporation freezing by contact nucleation inside-out, Geophys. Res. Lett., 32, L20814, doi:10.1029/2005GL024175, 2005.

    Google Scholar 

  • Kumai, M., Electron-microscope study of snow-crystal nuclei, J. Meteor., 8, 151–159, 1951.

    Google Scholar 

  • Knight, C.A., A note on the action of hygroscopic cloud nuclei, J. Atmos. Sci., 28, 1296–1298, 1971.

    CAS  Google Scholar 

  • Smith, R.B. and J.P. Evans, Orographic precipitation and water vapour fractionation over the southern Andes, J. Hydrometeor., 8, 3–19, 2007.

    Google Scholar 

  • Hegg, D.A., R.J. Ferek, P.V. Hobbs, and L.F. Radke, Dimethyl sulfide and cloud condensation nucleus correlations in the northeast Pacific Ocean, J. Geophys. Res., 96, 13,189–13,191, 1991a.

    Google Scholar 

  • Heymsfield, A.J., A.P. Jameson, and H.W. Frank, Hail growth mechanisms in a Colorado storm. Part II: Hail formation processes, J. Atmos. Sci., 37, 1779–1807, 1980.

    Google Scholar 

  • Borys, R.D., D.H. Lowenthal, and D.L. Mitchel, The relationship among cloud physics, chemistry and precipitation rate in cold mountain clouds, Atmos. Environ., 34, 2593–2602, 2000.

    CAS  Google Scholar 

  • Shaw, R.A., W.C. Reade, L.R. Collins, and J. Verlinde, Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra, J. Atmos. Sci., 55, 1965–1976, 1998.

    Google Scholar 

  • Roach, W.T., On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet, Q. J. Roy. Meteorol. Soc., 102, 361–372, 1976.

    Google Scholar 

  • Pawlowska, H., and J.L. Brenguier, Microphysical properties of stratocumulus clouds during ACE-2, Tellus, 52B, 867–886, 2000.

    Google Scholar 

  • Twomey, S., and J. Warner, Comparison of measurements of cloud droplets and cloud nuclei, J. Atmos. Sci., 24, 702–703, 1967.

    Google Scholar 

  • Rogers, D.C., Measurements of natural ice nuclei with a continuous flow diffusion chamber, Atmos. Res., 29, 209–228, 1993.

    Google Scholar 

  • Rogers, R.R., and M.K. Yau, A Short Course in Cloud Physics, 304 pp., Pergamon, Tarrytown, N.Y., 1989.

    Google Scholar 

  • Simpson, J., N.E. Westcott, R.J. Clerman, and R.A. Pielke, On cumulus mergers. Arch. Meteor. Geophy. Bioklim., Series A, 29, 1–40, 1980.

    Google Scholar 

  • Austin, P., Y. Wang, R. Pincus, and V. Kujala, Precipitation in stratocumulus clouds: Observational and modeling results, J. Atmos. Sci., 52, 2329–2352, 1995.

    Google Scholar 

  • Field, P.R., R.J. Hogan, P.R.A. Brown, A. Illingworth, T.W. Choularton, and R.J. Cotton, Parameterization of ice-particle size distributions for mid-latitude stratiform cloud, Q. J. Roy. Meteor., Soc., 131, 1997–2017, 2005.

    Google Scholar 

  • Cotton, W.R., and R.A. Anthes, Storm and Cloud Dynamics, Academic Press, San Diego, CA, 1989.

    Google Scholar 

  • von Blohn, N., S.K. Mitra, K. Diehl, and S. Borrmann, The ice nucleating ability of pollen. Part III: New laboratory studies in immersion and contact freezing modes including more pollen types, Atmos. Res., 78, 182–189, 2005.

    Google Scholar 

  • Warner, J., and S. Twomey, The production of cloud nuclei by cane fires and the effect on cloud droplet concentration, J. Atmos. Sci., 24, 704–706, 1967.

    Google Scholar 

  • Manton, M.J., and W.R. Cotton, Parameterization of the atmospheric surface layer, J. Atmos. Sci., 34, 331–334, 1977.

    Google Scholar 

  • Hobbs, P.V., Ice multiplication in clouds, J. Atmos. Sci., 26, 315–318, 1969.

    Google Scholar 

  • Khain, A.P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, Notes on the state-of-the-art numerical modeling of cloud microphysics, Atmos. Res., 55, 159–224, 2000.

    Google Scholar 

  • Hallett, J., and S.C. Mossop, Production of secondary ice crystals during the riming process, Nature, 249, 26–28, 1974.

    CAS  Google Scholar 

  • Garrett, T.J., and P.V. Hobbs, Long-range transport of continental aerosols over the Atlantic Ocean and their effects on cloud droplet size distributions, J. Atmos. Sci., 52, 2977–2984, 1995.

    Google Scholar 

  • Levin, Z., S.A. Yankofsky, D. Pardess, and N. Magal, Possible application of bacterial condensation freezing to artificial rainfall enhancement, J. Clim. Appl. Meteor., 26, 1188–1197, 1987.

    Google Scholar 

  • Mossop, S.C., R.E. Ruskin, and J.K. Hefferman, Glaciation of a cumulus at –4°C, J. Atmos. Sci., 25, 889–899, 1968.

    Google Scholar 

  • Magono, C., and C.W. Lee, The vertical structure of snow clouds as revealed by “snow crystal sondes,” J. Meteor. Soc. Japan, 51, 176–190, 1973.

    Google Scholar 

  • Woodcock, A.H., and R.H. Jones, Rainfall trends in Hawaii, J. Appl. Meteor., 9, 690–695, 1970.

    Google Scholar 

  • Pinsky, M.B., and A.P. Khain, Turbulence effects on droplet growth and size distributions in clouds – A review, J. Aerosol Sci., 28, 1127–1214, 1997b.

    Google Scholar 

  • Ayers, G.P., J.P. Ivey, and R.W. Gillett, Coherence between seasonal cycles of dimethyl sulfide, methansulphonate and sulfate in marine air, Nature, 349, 404–406, 1991.

    CAS  Google Scholar 

  • Ochs, H.T., K.V. Beard, R.R. Czys, N.F. Laird, D.E. Schaufelberger, and D.J. Holdridge, Collisions between small precipitation drops. Part I: Laboratory measurements of bounce, coalescence and temporary coalescence, J. Atmos. Sci., 52, 2258–2275, 1995.

    Google Scholar 

  • Scott, B.C., and P.V. Hobbs, A theoretical study of the evolution of mixed-phase cumulus clouds, J. Atmos. Sci., 34, 812–826, 1977.

    Google Scholar 

  • Harrington, J.Y., G. Feingold, and W.R. Cotton, Radiative impacts on the growth of a population of drops within simulated summertime arctic stratus, J. Atmos. Sci., 57, 766–785, 2000.

    Google Scholar 

  • Mossop, S.C., A. Ono, and K.J. Heffernan, Studies of ice crystals in natural clouds, J. Atmos. Res., 1, 44–64, 1967.

    Google Scholar 

  • Hobbs, P.V., Simultaneous airborne measurements of cloud condensation nuclei and sodium-containing particles over the ocean, Q. J. R. met. Soc., 97, 263–271, 1971.

    Google Scholar 

  • Khain, A.P., and M.B. Pinsky, Turbulence effects on the collision kernel. II: Increase of the swept volume of colliding drops, Q. J.Roy. Meteor. Soc., 123, 1543–1560, 1997.

    Google Scholar 

  • Smith, R.B., I. Barstad, L. Bonneau, Orographic precipitation and Oregon's climate transition, J. Atmos. Sci., 62(1), 177–191, 2005.

    Google Scholar 

  • Al-Naimi, R., and C.P.R. Saunders, Measurements of natural deposition and condensation-freezing ice nuclei with a continuous flow chamber, Atmos. Environ., 19, 1871–1882, 1985.

    CAS  Google Scholar 

  • Oraltay, R.G., J. Hallett, Evaporation and melting of ice crystals: A laboratory study, Atmos. Res., 24, 169–189, 1989.

    Google Scholar 

  • Twomey, S., and K.A. Davidson, Automatic observations of cloud nucleus concentration, J. Atmos. Sci., 27, 1056–1059, 1970.

    Google Scholar 

  • Vali, G., Atmospheric ice nucleation – A review, J. Rech. Atmos., 19, 105–115, 1985.

    CAS  Google Scholar 

  • Lelieveld, J., G.J. Roelofsf, L. Ganzeveld, J. Feichter, and H. Rodhe, Terrestrial sources and distribution of atmospheric sulfur, Phil. Trans. Roy. Soc. Lond., B352, 149–158, 1997.

    Google Scholar 

  • Jiusto, J.E., Maritime concentration of condensation nuclei, J. Rech. Atmos., 2, 245–250, 1966.

    Google Scholar 

  • Gultepe, I., G.A. Isaac, S.G. Cober, Ice crystal number concentration versus temperature for climate studies, Internat, J. Climatol., 21, 1281–1302, 2001.

    Google Scholar 

  • Pruppacher, H.R., and J.D. Klett, Microphysics of Clouds and Precipitation, pp. 954, Reidel, Dordrecht, 1997.

    Google Scholar 

  • Easter, R.C., and P.V. Hobbs, The formation of sulfates and the enhancement of cloud condensation nuclei in clouds, J. Atmos. Sci., 31, 1586–1594, 1974.

    CAS  Google Scholar 

  • Hobbs, P.V., and L.F. Radke, Cloud condensation nuclei from a simulated forest fire, Science, 163, 279–280, 1969.

    CAS  Google Scholar 

  • Rangno, A.L., and P.V. Hobbs, Ice particle concentrations and precipitation development in small continental cumuliform clouds, Q. J. Roy. Meteor. Soc., 120, 573–601, 1994.

    Google Scholar 

  • Telford, J.W., T.S. Keck, and S.K. Chai, Entrainment at cloud tops and the droplet spectra, J. Atmos. Sci., 41, 3170–3179, 1984.

    Google Scholar 

  • Field, P.R., R.J. Cotton, K. Noone, P. Glantz, P.H. Kaye, E. Hirst, R.S. Greenaway, C. Jost, R. Gabriel, T. Reiner, M. Andreae, C.P.R. Saunders, A. Archer, and T. Choularton, Ice nucleation in orographic wave clouds: Measurements made during INTACC, Q. J. Roy. Meteor. Soc., 127, 1493–1512, 2001.

    Google Scholar 

  • Franklin, B., Meteorological imaginations and conjectures, Mem. Manchester Lit. and Phil. Soc., 2, 374–381, 1789.

    Google Scholar 

  • Dong Y.Y., R.G. Oraltay, and J. Hallett, ice particle generation during evaporation, Atmos. Res. 32, 45–53, 1994.

    Google Scholar 

  • Telford, J.W., and S.K. Chai, A new aspect of condensation theory, Pure and App. Geophys., 118, 720–742, 1980.

    Google Scholar 

  • Fankhauser, J.C., Estimates of thunderstorm precipitation efficiency from field measurements in LLOP, Mon. Wea. Rev., 116, 663–684, 1988.

    Google Scholar 

  • Huffman, P.J., Supersaturation spectra of AgI and natural ice nuclei, J. Appl. Met., 12, 6, 1080–1082, 1973a.

    CAS  Google Scholar 

  • Vardiman, L., The generation of secondary ice particles in cloud crystal-crystal collisions, J. Atmos. Sci., 35, 2168–2180, 1978.

    Google Scholar 

  • Howell, W.E., The growth of cloud drops in uniformly cooled air, J. Meteor., 6, 134–149, 1949.

    Google Scholar 

  • Roberts, P., and J. Hallett, A laboratory study of the ice nucleating properties of some mineral particulates, Q. J. Roy. Meteorol. Soc., 94, 25–34, 1968.

    Google Scholar 

  • Hobbs, P.V., and A.L. Rangno, Ice particle concentrations in clouds, J. Atmos. Sci., 42, 2523–2549, 1985.

    Google Scholar 

  • Braham, R.R., What is the role of ice in summer rain-showers? J. Atmos. Sci., 21, 640–646, 1964.

    Google Scholar 

  • Pinsky, M.B., and A.P. Khain, Formation of inhomogeneity in drop concentration induced by the inertia of drops falling in a turbulent flow, and the influence of the inhomogeneity on the drop-spectrum broadening, Q. J. Roy. Meteorol. Soc., 123, 165–186, 1997a.

    Google Scholar 

  • Hoppel, W.A., Nucleation in the MSA-water vapour system, Atmos. Environ., 21, 2703–2709, 1987.

    CAS  Google Scholar 

  • Rogers, D.C., P.J. DeMott, and S.M. Kreidenweis, Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring, J. Geophys. Res., 106, 15,053–15,063, 2001.

    CAS  Google Scholar 

  • Hudson, J.G., Effects of CCN Concentrations on stratus Clouds, J. Atmos. Sci., 40, 480–486, 1983.

    Google Scholar 

  • van den Heever, S.C., G.G. Carrio, W.R. Cotton, P.J. DeMott, and A.J. Prenni, Impacts of nucleating aerosol on Florida convection. Part I: Mesoscale Simulations, J. Atmos. Sci., 63, 1752–1775, 2006.

    Google Scholar 

  • Stewart, R.E., Precipitation types in winter storms, Pure and Appl. Geophys., 123, 597–609, 1985.

    Google Scholar 

  • Squires, P., The microstructure and colloidal stability of warm clouds. I. The relation between structure and stability, Tellus, 10, 256–271, 1958.

    Google Scholar 

  • Chaumat, L., and J.L. Brenguier, Droplet spectra broadening in cumulus clouds. Part II: Micro-scale droplet concentration heterogeneities, J. Atmos. Sci., 58, 642–654, 2001.

    Google Scholar 

  • Luria, M., C.C. Van Valin, J.N. Galloway, W.C. Keene, D.L. Wellman, H. Sievering, and J.F. Boatman, The relationship between dimethyl sulfide and particulate sulfate in the mid-Atlantic Ocean atmosphere, Atmos. Environ., 23, 139–147, 1989.

    CAS  Google Scholar 

  • Hobbs, P.V., D.A. Bowdle, and L.F. Radke, Particles in the lower troposphere over the High Plains of the United States. I: Size distributions, elemental compositions and morphologies, J. Clim. Appl. Meteor., 24, 1344–1356, 1985a.

    Google Scholar 

  • Levkov, L., Congélation de gouttes d’eau au contact particules de CuS, J. de Rech. Atmos., 5, 133–136, 1971.

    Google Scholar 

  • Findeisen, W., Die kolloidmeteorologisch Vorgänge bei der Niederschlagsbildung, Met. Z., 55, 121–132, 1938.

    Google Scholar 

  • Shaw, R.A., and D. Lamb, Experimental determination of the thermal accommodation and condensation coefficients of water, J. Chem. Phys., 111, 10,659–10,663, 1999.

    CAS  Google Scholar 

  • Wallace, J.M. and P.V. Hobbs, Atmospheric Science: An Introductory Science, Second Edition, 504 pp., Academic Press, Burlington, 2006.

    Google Scholar 

  • Yin, Y., Z. Levin, T.G. Reisin, and S. Tzivion, The effects of giant condensation nuclei on the development of precipitation in convective clouds – A numerical study, Atmos. Res., 53, 91–116, 2000a.

    Google Scholar 

  • Auer, Jr., A.H., D.L. Veal, and J.D. Marwitz, Observations of ice crystal and ice nuclei concentrations in stable cap clouds, J. Atmos. Sci., 26, 1342–1343, 1969.

    Google Scholar 

  • Cantrell, W., and A. Heymsfield, Production of ice in tropospheric clouds, Bull. Amer. Meteor. Soc., 86(6), 795–807, 2005.

    Google Scholar 

  • Laaksonen, A., A. Hamed, J. Joutsensaari, L. Hiltunen, F. Cavalli, W. Junkermann, A. Asmi, S. Fuzzi, and M.C. Facchini, Cloud condensation nucleus production from nucleation events at a highly polluted region, Geophys. Res. Lett., 32, L06812, doi:10.1029/2004GL022092, 2005.

    Google Scholar 

  • Gokhale, N.R., and J.D. Spengler, Freezing of freely suspended water droops by contact nucleation, J. Appl. Meteor., 11, 157–160, 1972.

    CAS  Google Scholar 

  • Leaitch, W.R., J.W. Strapp, and G.A. Isaac, Cloud droplet nucleation and cloud scavenging of aerosol sulphaate in polluted atmospheres, Tellus, 38B, 328–344, 1986.

    CAS  Google Scholar 

  • Kessler, E., On the Distribution and Continuity of Water Substance in Atmospheric Circulation, Meteorol. Monogr., 10, 84 pp., American Meteorological Society, Boston, MA, 1969.

    Google Scholar 

  • Levin, Z., and S.A. Yankofsky, Contact versus immersion freezing of freely suspended droplets by bacterial ice nuclei, J. Clim. and Appl. Meteor., 22, 1964–1966, 1983.

    Google Scholar 

  • Wieland, W., Die Wasserdampfkondensation an naturlichen Aerosol bei geingen Übersaffigungen, Z. Angew. Math. Phys., 7, 428–436, 1956.

    CAS  Google Scholar 

  • DeMott, P.J., K. Sassen, M.R. Poellet, D. Baumgardner, D.C. Rogers, S.D. Brooks, A.J. Prenni, and S.M. Kreidenweis, African dust aerosols as atmospheric ice nuclei, Geophys. Res. Lett,. 30(14), 1732, doi:10.1029/2003GL017410, 2003a.

    Google Scholar 

  • Levin, Z., M. Neiburger and L. Rodriguez, Jr., Experimental evaluation of collection efficiencies and coalescence efficiencies of cloud drops, J. Atmos. Sci., 30, 944–946, 1973.

    Google Scholar 

  • Squires, P., and S. Twomey, A comparison of cloud nucleus measurements over central North America and the Caribbean Sea, J. Atmos. Sci., 23, 401–404, 1966.

    Google Scholar 

  • Twomey, S., On the nature and origin of natural cloud nuclei, Bull. Obs. de Puy de Dome, 1, 1–5, 1960.

    Google Scholar 

  • Stith, J.L., L.F. Radke, and P.V. Hobbs, Particle emissions and the production of ozone and nitrogen oxides from the burning of forest slash, Atmos. Environ., 15, 73–82, 1981.

    CAS  Google Scholar 

  • Meyers, M.P., P.J. DeMott, and W.R. Cotton, New primary ice nucleation parameterizations in an explicit cloud model, J. Appl. Meteor., 31, 708–721, 1992.

    Google Scholar 

  • Market, P., S. Allen, R. Scofield, R. Kuligowski, and A Gruber, Precipitation efficiency of warm season midwestern mesoscale convective systems, Wea. Forecasting., 18, 1273–1285, 2003.

    Google Scholar 

  • Cotton, W.R., R.A. Pielke, Sr., R.L. Walko, G.E. Liston, C.J. Tremback, H. Jiang, R.L. McAnelly, J.Y. Harrington, M.E. Nicholls, G.G. Carrió, and J.P. McFadden, RAMS 2001: Current status and future directions. Meteor. Atmos Physics, 82, 5–29, 2003.

    Google Scholar 

  • Smith, R.B., Q. Jiang, M.G. Fearon, P. Tabary, M. Dorninger, J.D. Doyle, and R. Beniot, Orographic precipitation and air mass transformation: An Alpine example, Q. J. Roy. Meteor. Soc., 129, 433–454, 2003.

    Google Scholar 

  • Hoppel, W.A., J.E. Dinger, and R.E. Ruskin, Vertical profiles of CCN at various geographical locations, J. Atmos. Sci., 30, 1410–1420, 1973.

    Google Scholar 

  • Koenig, L.R., The glaciating behavior of small cumulonimbus clouds, J. Atmos Sci., 20, 29–47, 1963.

    Google Scholar 

  • Levin, Z., E. Ganor, and V. Gladstein, The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean, J. Appl. Meteor., 35, 1511–1523, 1996.

    Google Scholar 

  • DeMott, P.J., M.P. Meyers, and W.R. Cotton, Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds, J. Atmos. Sci., 41, 77–90, 1994.

    Google Scholar 

  • Gerber, H., Microphysics of marine stratocumulus clouds with two drizzle modes, J. Atmos. Sci., 53, 1649–1662, 1996.

    Google Scholar 

  • Eagan, R.C., P.V. Hobbs, and L.F. Radke, Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires, J. Appl. Meteor., 13, 553–557, 1974b.

    Google Scholar 

  • Yankofsky, S., Z. Levin, T. Bertold, and N. Sandlerman, Some basic characteristics of bacterial freezing nuclei, J. Appl. Meteor., 20, 1013–1019, 1981.

    Google Scholar 

  • Brenguier, J.L., and L. Chaumat, Droplet spectra broadening in cumulus clouds. Part I: Broadening in adiabatic cores, J. Atmos. Sci., 58, 628–641, 2001.

    Google Scholar 

  • Birmili, W., B. Yuskiewicz, A. Wiedensohler, F. Stratmann, T.W. Choularton, and K.N. Bower, Climate-relevant modification of the aerosol size distribution by processes associated with orographic clouds, Atmos. Res., 50, 241–263, 1999.

    CAS  Google Scholar 

  • Whelpdale, D.M., and R. List, The coalescence process of raindrop growth, J. Geophys. Res., 76, 2836–2856, 1971.

    Google Scholar 

  • Cotton, W.R., Storms, ASTeR Press, Fort Collins, CO, 158 pp., 1990.

    Google Scholar 

  • Dinger, J.E., H.B. Howell, and T.A. Wojciechowski, On the source and composition of cloud nuclei in a subsident air mass over the North Atlantic, J. Atmos. Sci., 27, 791–797, 1970.

    Google Scholar 

  • Bergeron, T., On the physics of clouds and precipitation, in Proc. 5th Assembly UGGI, Volume 2, Lisbon, 1933.

    Google Scholar 

  • Cooper, W.A., Ice formation in wave clouds: Observed enhancement during evaporation, Proc. Conf. Cloud Physics, Dallas, Amer. Meteor. Soc., 147–152, 1995.

    Google Scholar 

  • Danielsen, E.F., Inherent difficulties in hail probability prediction, in Meteor Monographs, 16(38), Amer. Met. Soc., edited by G.B. Foote, and C.A. Knight:, pp. 135–143, Boston, MA, 1977.

    Google Scholar 

  • Goldsmith, P., J. Goster, and C. Hume, The ice phase in clouds, Preprints, International Conference on Cloud Physics, Boulder, CO, Amer. Meteor. Soc., Boston, 163–167, 1976.

    Google Scholar 

  • Hindman, E.E, II., The nature of aerosol particles from a paper mill and their effects on clouds and precipitation, Ph.D. dissertation, University of Washington, Seattle, 242 pp., 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cotton, W.R., Yuter, S. (2009). Principles of Cloud and Precipitation Formation. In: Levin, Z., Cotton, W.R. (eds) Aerosol Pollution Impact on Precipitation. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8690-8_2

Download citation

Publish with us

Policies and ethics