Skip to main content

Microgravity Droplet Combustion: An Inverse Scale Modeling Problem

  • Chapter
Progress in Scale Modeling

Abstract

Scaling behavior of burning rate constant with initial droplet diameter is investigated for a single component, sooting fuel under going spherically symmetric combustion in microgravity. Three different regions were identified: the D2-law region where the burning rate constant is independent of initial droplet size, the sooting region, and the non-luminous radiative loss region. In the last two regions the burning rate constant is shown to decrease as D0 -1/4 where D0 is the initial droplet size. This decrease is primarily due to temperature dependent property variation. An estimate for the critical diameter that divides the first two regions is developed using a semi-empirical formulation for sooting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Dietrich, J.B. Haggard, Jr., F.L. Dryer, V. Nayagam, B.D. Shaw, F.A. Williams, Proceedings of the Combustion Institute, 26 (1996) 1201–1207.

    Google Scholar 

  2. V. Nayagam, J.B. Haggard, Jr., R.O. Colantonio, A.J. Marchese, F.L. Dryer, F.A. Williams, AIAA J., 36 (1998) 1369–1378.

    Article  Google Scholar 

  3. F.A. Williams, F.L. Dryer, Science requirements document for the droplet combustion experiment, NASA Lewis Research Center, Cleveland, Ohio (1994).

    Google Scholar 

  4. W.A. Sirignano, “Fluid dynamics and transport of droplets and sprays,” Cambridge University Press, 1999.

    Google Scholar 

  5. F.A. Williams, Second International Symposium on Scale Modeling, Lexington, Kentucky (1997) 147–163.

    Google Scholar 

  6. G.A. Godsave, Proceedings of the Combustion Institute, 4 (1953) 818–830.

    Google Scholar 

  7. D.B. Spalding, Proceedings of the Combustion Institute, 4 (1953) 47–865.

    Google Scholar 

  8. F.A. Williams, J. Chem. Phys., 33 (1960) 133–144.

    Article  Google Scholar 

  9. H. Hara, S. Kumagai, Proceedings of the Combustion Institute, 25 (1990) 423–429.

    Google Scholar 

  10. G.S. Jackson, C.T. Avedisian, Proceedings of Royal Society of London A, 446 (1994) 255–276.

    Google Scholar 

  11. K.O. Lee, S.L. Manzello, M.Y. Choi, Combust. Sci. Tech., 312 (1998) 139–156.

    Article  Google Scholar 

  12. A.J. Marchese, F.L. Dryer, V. Nayagam, Combust. Flame, 116 (1999) 432–459.

    Article  Google Scholar 

  13. S.L. Manzello, M.Y. Choi, A. Kazakov, F.L. Dryer, R. Dobashi, T. Hirano, Proceedings of the Combustion Institute, 28 (2000) 1079–1086.

    Google Scholar 

  14. M.D. Ackerman, R.O. Colantonio, R.K. Crouch, F.L. Dryer, J.B. Haggard, G. Linteris, A.J. Marchese, J.E. Voss, F.A. Williams, B.L. Zhang, NASA/TM-2003-212553 (2003).

    Google Scholar 

  15. J.B. Haggard, Jr., M.H. Brace, F.L. Dryer, M.Y. Choi, F.A. William, J. Card, AIAA-90-0649, 28th Aerospace Sciences Meeting, Reno, Nevada, 1990.

    Google Scholar 

  16. C.K. Law, F.A. Williams, Combust. Flame, 19 (1972) 393–405.

    Article  Google Scholar 

  17. I.K. Puri, P.A. Libby, Combust. Sci. Tech., 76 (1991) 67–80.

    Article  Google Scholar 

  18. G.S. Jackson, C.T. Avedisian, Combust. Sci. Tech., 115 (1996) 125–149.

    Article  Google Scholar 

  19. K. Saito, F.A. Williams, A.S. Gordon, Combust. Sci. Tech., 47 (1986) 117–138.

    Article  Google Scholar 

  20. I. Aharon, B.D. Shaw, Microgravity Sci. Technol., 10 (1997) 75–85.

    Google Scholar 

  21. C.T. Avedisian, J. Propulsion and Power, 16 (2000) 628–635.

    Article  Google Scholar 

  22. Glassman, Combustion 2nd Edition, Academic Press, New York, 1987.

    Google Scholar 

  23. A.J. Marchese, F.L. Dryer, Combust. Sci. Tech., 124 (1997) 371–402.

    Article  Google Scholar 

  24. B.H. Chao, C.K. Law, J.S. T’ien, Proceedings of the Combustion Institute, 23 (1990) 523–531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nayagam, V., Marchese, A.J., Sacksteder, K.R. (2008). Microgravity Droplet Combustion: An Inverse Scale Modeling Problem. In: Saito, K. (eds) Progress in Scale Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8682-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8682-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8681-6

  • Online ISBN: 978-1-4020-8682-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics