Skip to main content

Self-Referential Reasoning in the Light of Extended Truth Qualification Principle

  • Chapter
Book cover Intelligent Engineering Systems and Computational Cybernetics

The purpose of this paper is to formulate truth-value assignment to self-referential sentences via Zadeh's truth qualification principle and to present new methods to assign truth-values to them. Therefore, based on the truth qualification process, a new interpretation of possibilities and truth-values is suggested by means of type-2 fuzzy sets and then, the qualification process is modified such that it results in type-2 fuzzy sets. Finally, an idea of a comprehensive theory of type-2 fuzzy possibility is proposed. This approach may be unified with Zadeh's Generalized Theory of Uncertainty (GTU) in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh L. A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Sysems 1(1): 3–28.

    Article  MATH  MathSciNet  Google Scholar 

  2. Zadeh L. A. (1979) Liar's Paradox and Truth Qualification Principle. ERL Memorandum M79/34. University of California, Berkeley, CA, USA.

    Google Scholar 

  3. Klir G. J., Yuan B. (eds.) (1996) Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh. World Scientific Publishing Company, Inc. RiverEdge, NJ, USA.

    Google Scholar 

  4. Zadeh L. A. (1975) The concept of a linguistic variable and its applications to approximate reasoning I. Information Sciences 8: 199–249.

    Article  MathSciNet  Google Scholar 

  5. mendel j. m., john r. i. (2002) type-2 fuzzy sets made simple. ieee transactions on fuzzy systems 10(2): 117–127.

    Article  Google Scholar 

  6. Mizumoto M., Tanaka K. (1976) Some properties of fuzzy sets of type-2. Information and Control 31: 312–340.

    Article  MATH  MathSciNet  Google Scholar 

  7. Karnik N. N., Mendel J. M. (2001) Centroid of a type-2 fuzzy set. Information Sciences 132: 195–220.

    Article  MATH  MathSciNet  Google Scholar 

  8. Dubois D., Prade H. (1978) Operations on fuzzy numbers. International Journal of System Sciences 9: 613–626.

    Article  MATH  MathSciNet  Google Scholar 

  9. Dubois D., Prade H. (1979) Operations in a fuzzy-valued logic. Information and Control 43: 224–240.

    Article  MATH  MathSciNet  Google Scholar 

  10. Bustince H., Burillo P. (2000) Mathematical analysis of interval-valued fuzzy relations: Applications to approximate reasoning. Fuzzy Sets and Systems 113: 205–219.

    Article  MATH  MathSciNet  Google Scholar 

  11. Mabuchi S.(1979) An interpretation of membership functions and the properties of general probabilistic operators as fuzzy set operators II: Extension to three-valued and interval-valued fuzzy sets. Fuzzy Sets and Systems 92: 31–50.

    Article  MathSciNet  Google Scholar 

  12. Schwartz D. G. (1985) The case for an interval-based representations of linguistic truth. Fuzzy Sets and Systems 17: 153–165.

    Article  MATH  MathSciNet  Google Scholar 

  13. Turksen I. B. (1986) Interval-valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20: 191–210.

    Article  MATH  MathSciNet  Google Scholar 

  14. Nguyen H. T., Kreinovich V., Zuo Q. (1997) Interval-valued degrees of belief: Applications of interval computations to expert systems and intelligent control. International Journal of Uncertainty, Fuzziness, and Knowledge-Based Sysems 5: 317–385.

    Article  MathSciNet  Google Scholar 

  15. Zadeh L. A. (1975) Calculus of fuzzy restrictions. In: Zadeh L. A., Fu K. S., Tanaka K. and Shimura M. (eds.) Fuzzy Sets and Their Applications to Cognitive and Decision Processes. Academic, New York, USA.

    Google Scholar 

  16. Klir G. J., Yuan B. (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ, USA.

    MATH  Google Scholar 

  17. Zadeh L. A. (1968) Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23: 421–427.

    Article  MATH  MathSciNet  Google Scholar 

  18. Barwise J., Etchemendy J. (1987) The Liar. Oxford University Press, New York, USA.

    MATH  Google Scholar 

  19. Martin R. L. (1978) The Paradox of the Liar. Ridgeview Press, USA.

    Google Scholar 

  20. Martin R. L. (1984) Recent Essays on Truth and the Liar Paradox. Oxford University Press.

    Google Scholar 

  21. McGee V. (1991) Truth, Vagueness and Paradox. Hackett, Indianapolis, IN, USA.

    MATH  Google Scholar 

  22. Hajek P., Paris J., Shepherdson J. (2000) The liar paradox and fuzzy logic. The Journal of Symbolic Logic 65(1): 339–346.

    Article  MATH  MathSciNet  Google Scholar 

  23. Grim P. (1993) Self-reference and chaos in fuzzy logic. IEEE Transactions on Fuzzy Systems 1(4): 237–253.

    Article  Google Scholar 

  24. Chen Y. H. (1999) A revisit to the liar. Journal of the Franklin Institute 336: 1023–1033.

    Article  MATH  Google Scholar 

  25. Binmore K. (1992) Fun and Games. Heath and Company, Lexington, MA, USA.

    MATH  Google Scholar 

  26. Vezerides K., Kehagias A. (2003) The liar and related paradoxes: Fuzzy truth-value assignment for collections of self-referential sentences. Technical Report.

    Google Scholar 

  27. Mendel J. M. (2003) Fuzzy sets for words: A new beginning. Proceedings of 2003 IEEE FUZZ. pp. 37–42.

    Google Scholar 

  28. Wu H., Mendel J. M. (2002) Uncertainty bounds and their use in the design of type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems 10(5): 622–639.

    Article  Google Scholar 

  29. Dubois D., Prade H. (2005) Interval-valued fuzzy sets, possibility theory and imprecise probability. Proceedings of International Conference in Fuzzy Logic and Technology (EUSFLAT'05), Barcelona, Spain.

    Google Scholar 

  30. Dubois D., Prade H. (1987) Two-fold fuzzy sets and rough sets—some issues in knowledge representation. Fuzzy Sets and Systems 23: 3–18.

    Article  MATH  MathSciNet  Google Scholar 

  31. Zadeh L. A. (2005) Toward a generalized theory of uncertainty (GTU)—an outline. Information Sciences 172: 1–40.

    Article  MATH  MathSciNet  Google Scholar 

  32. Lucas C., Nadjar Araabi B. (1999) Generalization of the Dempster-Shafer theory: A fuzzy-valued measure. IEEE Transactions on Fuzzy Systems 7(3): 255–270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rajati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rajati, M.R., Khaloozadeh, H., Fatehi, A. (2009). Self-Referential Reasoning in the Light of Extended Truth Qualification Principle. In: Machado, J.A.T., Pátkai, B., Rudas, I.J. (eds) Intelligent Engineering Systems and Computational Cybernetics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8678-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8678-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8677-9

  • Online ISBN: 978-1-4020-8678-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics