Skip to main content

Analysis of Truncation Errors and Design of Physically Optimized Discretizations

  • Chapter

Part of the book series: Ercoftac Series ((ERCO,volume 12))

Abstract

Further development of Large Eddy Simulation (LES) faces as major obstacle the strong coupling between subgrid-scale (SGS) model and the truncation error of the numerical discretization. Recent analyzes indicate that for certain discretizations and certain flow configurations the truncation error itself can act as implicit SGS model. In this paper, we explore how implicit SGS models can be derived systematically and propose a procedure for design, analysis, and optimization of nonlinear discretizations. Implicit LES can be made rigorous by requiring that the numerical dissipation approximates the SGS dissipation obtained from the analysis of nonlinear interactions in turbulence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams NA, Hickel S, Franz S (2004) Implicit subgrid-scale modeling by adaptive deconvolution. J Comp Phys 200:412–431

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Back T, Fogel D, Michalewicz Z (1997) Handbook of Evolutionary Computation. University Oxford Press.

    Google Scholar 

  3. Chollet J-P (1984) Two-point closures as a subgrid-scale modeling tool for large-eddy simulations. In: Durst F and Launder B (eds) Turbulent Shear Flows IV, Heidelberg:62–72. Springer, Berlin

    Google Scholar 

  4. Domaradzki JA, Adams NA (2002) Direct modeling of subgrid scales of turbulence in large-eddy simulations. J Turb 3, Art no 24

    ADS  Google Scholar 

  5. Domaradzki JA, Radhakrishnan S (2005). Eddy viscosities in implicit large eddy simulations of decaying high Reynolds number turbulence with and without rotation. Fluid Dyn Res 36:385–406

    Article  MATH  ADS  Google Scholar 

  6. Domaradzki JA., Xiao Z, Smolarkiewicz PK (2003). Effective eddy viscosities in implicit large eddy simulations of turbulent flows. Phys Fluids 15:3890–3893

    Article  ADS  Google Scholar 

  7. Fureby C, Tabor G, Weller HG, Gosman AD (1997). A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys Fluids 9:1416–1429

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Garnier E, Mossi M, Sagaut P, Comte P, Deville M (1999) On the use of shock-capturing schemes for large-eddy simulation. J Comput Phys 153:273–311

    Article  MATH  ADS  Google Scholar 

  9. Ghosal S (1996) An analysis of numerical errors in large-eddy simulations of turbulence. J Comput Phys 125:187–206

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Grinstein F, Margolin L, Rider W (eds) (2007) Implicit large eddy simulation: computing turbulent flow dynamics. Cambridge University Press

    Google Scholar 

  11. Harten A, Engquist B, Osher S, Chakravarthy S (1987) Uniformly high order accurate essentially non-oscillatory schemes, III. J Comput Phys 71:231–303

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Heisenberg W (1948) Zur statistischen Theorie der Turbulenz. Z Phys A 124:628–657

    MATH  MathSciNet  Google Scholar 

  13. Hickel S, Adams NA (2007) On implicit subgrid-scale modeling in wall-bounded flows. Phys Fluids 19, Art no 105106

    Article  ADS  Google Scholar 

  14. Hickel S, Adams NA, Domaradzki JA (2006) An adaptive local deconvolution method for implicit LES. J Comput Phys 213:413–436

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Hickel S, Adams NA, Mansour NN (2007) Implicit subgrid-scale modeling for large-eddy simulation of passive-scalar mixing. Phys Fluids 19, Art no 095102

    Article  ADS  Google Scholar 

  16. Leonard A (1974) Energy cascade in large eddy simulations of turbulent fluid flows. Adv Geophys 18A:237–248

    ADS  Google Scholar 

  17. Lesieur M (1997) Turbulence in Fluids, third edn. Kluwer, Dordrecht

    MATH  Google Scholar 

  18. LeVeque RJ (1992) Numerical methods for conservation laws Birkhäuser, Basel

    Google Scholar 

  19. Sagaut P (2005) Large-Eddy Simulation for Incompressible Flows, third edn. Springer, Berlin

    Google Scholar 

  20. Schumann U (1975) Subgrid scale model for finite-difference simulations of turbulence in plane channels and annuli. J Comput Phys 18:376–404

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Spalart PR (1988) Direct simulation of a turbulent boundary layer up to Re_θ = 1410. J Fluid Mech 187:61–98

    Article  MATH  ADS  Google Scholar 

  22. Stolz S, Adams NA (1999) An approximate deconvolution procedure for large-eddy simulation. Phys Fluids 11:1699–1701

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hickel, S., Adams, N.A. (2008). Analysis of Truncation Errors and Design of Physically Optimized Discretizations. In: Meyers, J., Geurts, B.J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations. Ercoftac Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8578-9_4

Download citation

Publish with us

Policies and ethics