Skip to main content

Adaptive Turbulence Computation Based on Weak Solutions and Weak Uniqueness

  • Chapter
Quality and Reliability of Large-Eddy Simulations

Part of the book series: Ercoftac Series ((ERCO,volume 12))

  • 1821 Accesses

Abstract

We review our work on adaptivity and error control for turbulent flow, and we present recent developments on turbulent boundary layer flow. The computational method G2 is not based on filtering of the Navier-Stokes (NS) equations, and thus no Reynolds (subgrid) stresses are introduced. Instead the mathematical basis is ϵ-weak solutions to the NS equations and weak uniqueness of such ϵ-weak solutions. Based on this mathematical framework we construct adaptive finite element methods for the computation of (mean value) output in turbulent flow, where the mesh is refined with respect to a posteriori estimates of the error in the output of interest. The a posteriori error estimates are based on stability information from the numerical solution of an associated dual (adjoint) problem with data given by the output of interest. To model turbulent boundary layer separation we use a skin friction boundary layer model, and we also consider the case of zero skin friction corresponding to solving the inviscid Euler equations with slip boundary conditions, which we refer to as an EG2 method. The results of EG2 computations suggest a new resolution to the d’Alembert paradox, and a new scenario for turbulent boundary layer separation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth TJ (2003) Numerical methods and error estimation for conservation laws on structured and unstructured meshes. Von Karman Institute Lecture Series 04-2003, Brussels, Belgium

    Google Scholar 

  2. Becker R, Rannacher R (1996) A feed-back approach to error control in adaptive finite element methods: Basic analysis and examples. East-West J Numer Math 4:237–264

    MATH  MathSciNet  Google Scholar 

  3. Becker R, Rannacher R (2001) A posteriori error estimation in finite element methods. Acta Numer 10:1–103

    Article  MATH  MathSciNet  Google Scholar 

  4. Braack M, Richter T (2006) Solutions of 3D Navier–Stokes benchmark problems with adaptive finite elements. Comput Fluids 35(4):372–392

    Article  MATH  Google Scholar 

  5. Brezzi F, Houston P, Marini D, Süli E (2000) Modeling subgrid viscosity for advection-diffusion problems. Computat Meth Appl Mech Eng 190(13–14):1601–1610

    Article  MATH  Google Scholar 

  6. Burman E (2000) Adaptive finite element methods for compressible flow. Meth Appl Mech Engrg 190:1137–1162.

    Article  MATH  MathSciNet  Google Scholar 

  7. Burman E (2000) Adaptive finite element methods for compressible two-phase flow. Meth Mod Meth App Sci 10(7):963–989

    Article  MATH  MathSciNet  Google Scholar 

  8. Burman E, Ern A, Giovangigli V Adaptive finite element methods for low mach, steady laminar combustion. J Comput Phy 188(2):472–492

    Google Scholar 

  9. Clay mathematical institute millenium problems. http://www.claymath.org/millennium/Navier-Stokes_Equations/

    Google Scholar 

  10. Constantinescu G, Pacheco R, Squires K (2002) Detached-eddy simulation of flow over a sphere. AIAA tech. report 2002-0425

    Google Scholar 

  11. d’Alembert J (1752) Essai d’une nouvelle théorie de la résistance des fluides. Paris, http://gallica.bnf.fr/anthologie/notices/00927.htm

    Google Scholar 

  12. Duchon J, Robert R (2000) Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes solutions. Nonlinearity 13:249–255

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Dunca A, John V (2004) Finite element error analysis of space averaged flow fields defined by a differential filter. Math Mod Meth Appl Sci 14:603–618

    Article  MATH  MathSciNet  Google Scholar 

  14. Dunca A, John V, Layton WJ (2003) The commutation error of the space averaged Navier–Stokes equations on a bounded domain. In Galdi GP, Heywood JG, Rannacher R (Eds) Contributions to current challenges in mathematical fluid mechanics, Advances in mathematical fluid mechanics 3:53–78. Birkhäuser, Basel

    Google Scholar 

  15. Dunca A, John V, Layton WJ (2004) Approximating local averages of fluid velocities: the equilibrium Navier–Stokes equations. Appl Numer Math 49:187–205

    Article  MATH  MathSciNet  Google Scholar 

  16. Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. Acta Numer 4:105–158

    Article  MathSciNet  Google Scholar 

  17. Frisch U (1995) Turbulence — The Legacy of A. N. Kolmogorov. Cambridge University Press

    Google Scholar 

  18. Geurts BJ (2006) Interacting errors in large-eddy simulation: a review of recent developments. J Turbul 7, Art no 55

    ADS  MathSciNet  Google Scholar 

  19. Giles M, Larson M, Levenstam M, Süli E (1997) Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow. Technical Report NA-76/06, Oxford University Computing Laboratory

    Google Scholar 

  20. Giles M, Süli E (2002) Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numer 11:145–236

    Article  MATH  MathSciNet  Google Scholar 

  21. Guermond JL (1999) Stabilization of Galerkin approximations of transport equations by subgrid modeling. Math Modell Num An 33(6):1293–1316

    Article  MATH  MathSciNet  Google Scholar 

  22. Hartmann R, Houston P (2002) Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J Comput Phys 183:508–532

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Heuveline V, Rannacher R (2003) Duality-based adaptivity in the hp-finite element method. J Numer Math 11(2):95–113

    Article  MATH  MathSciNet  Google Scholar 

  24. Hoffman J (2001) Dynamic subgrid modeling for time dependent convection-diffusion-reaction equations with fractal solutions. Int J Numer Meth Fluids 40:583–592

    Article  Google Scholar 

  25. Hoffman J (2004) On duality based a posteriori error estimation in various norms and linear functionals for LES. SIAM J Sci Comput 26(1):178–195

    Article  MATH  MathSciNet  Google Scholar 

  26. Hoffman J (2005) Computation of mean drag for bluff body problems using adaptive DNS/LES. SIAM J Sci Comput 27(1):184–207

    Article  MATH  MathSciNet  Google Scholar 

  27. Hoffman J (2006) Adaptive simulation of the turbulent flow past a sphere. J Fluid Mech 568:77–88

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Hoffman J (2006) Computation of turbulent flow past bluff bodies using adaptive general Galerkin methods: drag crisis and turbulent Euler solutions. Comput Mech 38:390–402

    Article  MathSciNet  MATH  Google Scholar 

  29. Hoffman J (to appear) Efficient computation of mean drag for the subcritical flow past a circular cylinder using general Galerkin G2. Int J Numer Meth Fluids

    Google Scholar 

  30. Hoffman J, Johnson C (2006) Computational turbulent incompressible Flow. Applied Mathematics Body and Soul 4. Springer, Berlin

    Google Scholar 

  31. Hoffman J, Johnson C (2006) A new approach to computational turbulence modeling. Comput Methods Appl Mech Engrg 195:2865–2880

    Article  MATH  MathSciNet  Google Scholar 

  32. Hoffman J, Johnson C (2007) Blow up of inviscid Euler solutions. Submitted

    Google Scholar 

  33. Hoffman J, Johnson C (2007) Flow separation in fluids with very small viscosity. Submitted

    Google Scholar 

  34. Hoffman J, Johnson C (2007) Resolution of d’Alembert’s paradox. J Math Fluid Mech, to appear

    Google Scholar 

  35. Iliescu T, John V, Layton WJ (2002) Convergence of finite element approximations of large eddy motion. Num Meth Part Diff Equ 18:689–710

    Article  MATH  MathSciNet  Google Scholar 

  36. John V (2002) Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes equations – numerical tests and aspects of the implementation. J Comp Appl Math 147:287–300

    Article  MATH  ADS  Google Scholar 

  37. John V, Layton WJ, Sahin N (2004) Derivation and analysis of near wall models for channel and recirculating flows. Comput Math Appl 48:1135–1151

    Article  MATH  MathSciNet  Google Scholar 

  38. John V, Liakos A (2006) Time dependent flow across a step: the slip with friction boundary condition. Int J Numer Meth Fluids 50:713–731

    Article  MATH  MathSciNet  Google Scholar 

  39. Johnson C (1998) Adaptive finite element methods for conservation laws. In: Advanced numerical approximation of nonlinear hyperbolic equations:269–323. Springer Lecture Notes in Mathematics, Springer, Berlin

    Google Scholar 

  40. Kolmogorov AN (1941) Dissipation of energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:16–18

    Google Scholar 

  41. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30:299–303

    ADS  Google Scholar 

  42. Kolmogorov AN (1941) On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. Dokl Akad Nauk SSSR 31:538–540

    Google Scholar 

  43. Leray J (1934) Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica 63:193–248

    Article  MATH  MathSciNet  Google Scholar 

  44. Murman EM, Rizzi A (1986) Application of Euler equations to sharp edge delta wings leading edge vortices. AGARD-CP-412, Art no 15

    Google Scholar 

  45. Prandtl (2006) Prandtl standard view. www.fluidmech.net/msc/prandtl.htm

    Google Scholar 

  46. Prandtl L (1904) On motion of fluids with very little viscosity. Third International Congress of Mathematics, Heidelberg. http://naca.larc.nasa.gov/digidoc/report/tm/52/NACA-TM-452.PDF

    Google Scholar 

  47. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil Trans R Soc Lond A 186 123–164

    Article  ADS  Google Scholar 

  48. Sagaut P, Deck S, Terracol M (2006) Multiscale and multiresolution approaches in turbulence. Imperial College Press

    Google Scholar 

  49. Sagaut P (2001) Large eddy simulation for incompressible flows. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  50. Sandboge R (1998) Quantitative error control for finite element methods for one-dimensional compressible flow. Siam J Numer Anal 35(5):2014–2034

    Article  MATH  MathSciNet  Google Scholar 

  51. Schlichting H (1955) Boundary layer theory. McGraw-Hill

    Google Scholar 

  52. Vasilyev OV, Lund TS, Moin P (1998) A general class of commutative filters for LES in complex geometries. J Comput Phy 146:82–104

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffman, J. (2008). Adaptive Turbulence Computation Based on Weak Solutions and Weak Uniqueness. In: Meyers, J., Geurts, B.J., Sagaut, P. (eds) Quality and Reliability of Large-Eddy Simulations. Ercoftac Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8578-9_2

Download citation

Publish with us

Policies and ethics