Skip to main content

Physiological and Ecological Characteristics of Blue-Green Algae in Lake Taihu

  • Chapter
Book cover Lake Taihu, China

Part of the book series: Monographiae Biologicae ((MOBI,volume 87))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A. L., U. Passow & B. E. Logan, 1993. The abundance and significance of a class of large transparent organic particles in the ocean. Deep-Sea Research I 40: 1131–1140.

    Article  CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & T. F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Becquevort, S., V. Rousseau & C. Lancelot, 1998. Major and comparable roles for free-living and attached bacteria in the degradation of Phaeocystis derived organic matter in Belgian coastal water of the North Sea. Aquatic Microbial Ecology 14: 39–48.

    Article  Google Scholar 

  • Berman, T., 1970. Alkaline phosphates and phosphorus availability in Lake Kinneret. Limnology and Oceanography 24: 541–547.

    Google Scholar 

  • Biddanda, B. A., 1985. Microbial synthesis of macro particulate matter. Marine Ecology Progress Series 20: 241–251.

    Article  Google Scholar 

  • Boavida, M. J. & R. T. Heath, 1983. Are the phosphatases released by Daphnia magna components of its food? Limnology and Oceanography 29: 641–645.

    Google Scholar 

  • Brunberg, A., 1999. Contribution of bacteria in the mucilage of Microcystis spp. to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiology Ecology 29:13–22.

    Article  CAS  Google Scholar 

  • Caiola, M., 1991. Bdellovibrio-like bacteria in Microcystis aeruginosa. Algological Studies 64: 369–376.

    Google Scholar 

  • Carney, J. J. & J. J. Elser, 1990. The strength of zooplankton-phytoplankton coupling in relation to trophic state. In: Tilzer M. M. & C. Serruya (eds.), Ecology of large lakes. New York: Springer-Verlag, 615–631.

    Google Scholar 

  • Cembella, A. D., N. J. Anita&P. J. Harrison, 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 2. CRC Critical Reviews in Microbiology 11: 13–81.

    Article  PubMed  CAS  Google Scholar 

  • Chróst, R. J., 1986. Algal-bacterial metabolic coupling in the carbon and cycle in lake. In: Meguar, F. & M. Gantar (eds.), Perspective in microbial ecology. Ljubljana: Slovene Society for Microbiology, pp. 360–366.

    Google Scholar 

  • Chróst, R. J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst, R. J. (ed.), Microbial enzymes in aquatic environments. New York: Springer-Verlag, 29–59.

    Google Scholar 

  • Chróst, R. J. & J. Overbeck, 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Pluβsee (north German eutrophic lake). Microbial Ecology 13: 229–248.

    Article  Google Scholar 

  • Chróst, R. J., R. Wcislo & G. Z. Halemejko, 1986. Enzymatic decomposition of organic matter by bacteria in a eutrophic lake. Archiv für Hydrobiologie 107: 145–165.

    Google Scholar 

  • Chróst, R. J., U. Münster, H. Rai, D. Albercht, P. K. Witzel & J. Overbeck, 1989. Photosynthetic production and exoenzymatic degradation of organic matter in euphotic zone of a eutrophic lake. Journal of Plankton Research 11: 223–242.

    Article  Google Scholar 

  • Dakhama, A., J. Noüe & M. C. Lavoie, 1993. Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. Journal of Applied Phycology 5: 297–306.

    Article  CAS  Google Scholar 

  • Ducklow, H. W., D. L. Kirchman, H. L. Quinby, C. A. Carlson & H. G. Dam, 1993. Stocks and dynamics of bacterioplankton carbon during the spring bloom in the eastern North Atlantic Ocean. Deep-Sea Research II 40: 245–263.

    Article  Google Scholar 

  • Gao, G., X. Y. Gao & B. Q. Qin, 2000. Experimental study on the ${\mathrm{PO}4}3-$ threshold of the alkaline phosphatase activity in Taihu Lake. Journal of Lake Sciences 12(4): 353–359 (In Chinese with English abstract).

    Google Scholar 

  • Gu, Y. F., Y. Luo, W. Y. Ma, Z. Y. Zhou & H. J. Cai, 2000. Effects of temperature, organic carbon, nitrogen and phosphate on the growth of Bacillus sp. isolated from Microcystis aeruginosa. Chinese Journal of Applied and Environment Biology 6(1): 86–89 (In Chinese with English abstract).

    CAS  Google Scholar 

  • Hantke, B., P. Fleischer, I. Domany, M. Koch, P. Pleβ, M. Wiendl&A. Melzer, 1996. P-release from DOP by phosphatase activity in comparison to P excretion by zooplankton. Studies in hardwater lakes of different trophic level. Hydrobiologia 317: 151–162.

    Article  CAS  Google Scholar 

  • Havens, K. E., 2001. Complex analyses of plankton structure and function. The Scientific World Journal 1: 119–132.

    CAS  Google Scholar 

  • Healey, F. P., 1973. Characteristics of phosphorus deficiency in Anabaena. Journal of Phycology 9: 383–394.

    CAS  Google Scholar 

  • Healey, F. P., 1978. Physiological indicators of nutrient deficiency in algae. Mitteilungen der Internatinalen Vereinigung für Limnologie 21: 34–41.

    CAS  Google Scholar 

  • Herndl, G. J., 1988. Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. II. Microbial density and activity in marine snow and its implication to overall pelagic processes. Marine Ecology Progress Series 48: 265–275.

    Article  Google Scholar 

  • Herndl, G. J., 1992. Marine snow in the Northern Adriatic Sea: possible causes and consequences for a shallow ecosystem. Marine Microbial Food Webs 6: 149–172.

    Google Scholar 

  • Jamet, D., C. Amblard & J. Devaux, 1997. Seasonal changes in alkaline phosphatase activity of bacteria and microalgae in Lake Pavin (Massif Central, France). Hydrobiologia 347: 185–195.

    Article  CAS  Google Scholar 

  • Jones, J. G., 1972. Studies on freshwater bacteria: association with algae and alkaline phosphatase activity. The Journal of Ecology 60: 59–75.

    Article  CAS  Google Scholar 

  • Kuenzler, E. J. & J. P. Perras, 1965. Phosphatase of marine algae. Biological Bulletin 128: 271–284.

    Article  Google Scholar 

  • Lian, Y. W., Y. L. Wang, T. L. Zhen & H. S. Hong, 1999. Advance in the research on interaction between red tide algae and bacteria. Marine Sciences 1: 35–37 (In Chinese with English abstract).

    Google Scholar 

  • Liu, L. L., Y. F. Gu, Y. Luo, W. Q. Ma, Z. Y. Zhou & H. J. Cai, 2000. On the growth and phosphorous metabolism of bacterium isolated from Microcystis aeruginosa in Taihu Lake. Journal of Lake Sciences 12(4): 373–378 (In Chinese with English abstract).

    Google Scholar 

  • Looij, A. V. & B. Riemann, 1993. Measurements of bacterial production in coastal marine environments using leucien: application of a kinetic approach to correct for isotope dilution. Marine Ecology Progress Series 102: 97–104.

    Article  Google Scholar 

  • Overbeck, J., 1991. Early studies on ecto-and extracellular enzymes in aquatic environments. In: Chróst, R. J. (ed.), Microbial enzymes in aquatic environments. New York: Springer-Verlag, 1–5.

    Google Scholar 

  • Petterson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus and phosphorus-deficiency indicators in Lake Erken. Archiv für Hydrobiologie 89: 54–87.

    Google Scholar 

  • Pomeroy, L. R.,2001. Caught in the food web: complexity made simple? Scientia Marina 65(suppl 2): 31–40.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Google Scholar 

  • Porter, K.G., H. Paerl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner, 1988. Microbial interactions in lake food webs. In: Carpenter, S. R. (ed.), Complex interactions in lake communities. New York: Springer-Verlag, 209–227.

    Google Scholar 

  • Posch, T. & H. Arndt, 1996. Uptake of sub-micrometer and micrometer-sized detrital particles by bacterivorous and ommivorous ciliates. Aquatic Microbial Ecology 10: 45–53.

    Article  Google Scholar 

  • Qin, X. M. & J. Z. Zou, 1997. Study on the effects of N, P, Fe-EDTA, Mn on the growth of a red tide dinoflagellate Scripsiella trochoidea. Oceanologia et Limnologia Sinica 28(6): 594–597 (In Chinese with English abstract).

    CAS  Google Scholar 

  • Reichardt, W., 1971. Catalytic mobilization of phosphate in lake water and by Cyanophyta. Hydrobiologia 38: 377–394.

    CAS  Google Scholar 

  • Reichardt, W., J. Overbeck & L. Steubing, 1967. Free dissolved enzymes in lake water. Nature (London) 216: 1345–1347.

    Article  CAS  Google Scholar 

  • Reim, R. L., M. S. Shane & R. E. Cannon, 1974. The characterization of a Bacillus capable of blue-green bactericidal activity. Canadian Journal of Microbiology 20: 981–986.

    PubMed  CAS  Google Scholar 

  • Rhee, G. Y., 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphates in Scenedesmus sp. Journal of Phycology 9: 495–506.

    CAS  Google Scholar 

  • Richardson, L. L. & K. D. Stolzenbach, 1995. Phytoplankton cell size and the development to microenvironments. FEMS Microbiology Ecology 16: 185–192.

    Article  CAS  Google Scholar 

  • Rivkin, R. B. & E. Swift, 1979. Diel and vertical patterns of alkaline phosphatase activity in the oceanic dinoflagellate Pyrocystis noctiluca. Limnology and Oceanography 34: 107–116.

    Google Scholar 

  • Schindler, D. W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Shanks, A. L. & D. Trent, 1979. Marine snow: microscale nutrient patches. Limnology and Oceanography 24: 850–854.

    CAS  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1987. High rates of consumption of bacteria by pelagic ciliates. Nature (London) 235: 710–711.

    Article  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 1988. Role of microbes in pelagic food web: a revised concept. Limnology and Oceanography 33: 225–1227.

    Article  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 2000. Marine microbes: an overview. In: Kirchman, D. L. (ed.), Microbial ecology of the oceans. New York: Wiley-Liss, 13–46.

    Google Scholar 

  • Simon, M., H. P. Grossart, B. Schweitzer & H. Ploug, 2002. Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology 28: 175–211.

    Article  Google Scholar 

  • Sommaruga, R.&R. D. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiology Ecology 24: 187–200.

    Article  CAS  Google Scholar 

  • Sorokin, Y. I., 1999. Aquatic microbial ecology. Leiden: Backhuys Publishers.

    Google Scholar 

  • Stewart, A. G. & R. G. Wetzel, 1982. Phytoplankton contribution to alkaline phosphatase activity. Archiv für Hydrobiologie 93: 265–271.

    CAS  Google Scholar 

  • Stockner, J. G. & K. G. Porter, 1988. Microbial food webs in freshwater planktonic ecosystem. In Carpenter, S. R. (ed.), Complex interactions in lake communities. New York: Springer-Verlag, 69–97.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology: lake and river ecosystem, 3rd edition. London: Academic Press.

    Google Scholar 

  • Worm, J. & M. Søndergaard, 1998. Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquatic Microbial Ecology 14: 19–28.

    Article  Google Scholar 

  • Wu, C. H., X. R. Wang & H. Sun, 1997. Establishment of models between the growth of Selenastrum capricornutum and several phosphorus fractions in the lake water. Environmental Chemistry 16(4): 341–347 (In Chinese with English abstract).

    CAS  Google Scholar 

  • Wynne, D. & G. Y. Rhee, 1986. Changes in alkaline phosphatase activity and phosphate uptake in P-limited phytoplankton, induced by light intensity and spectral quality. Hydrobiologia 160: 173–178.

    Article  Google Scholar 

  • Wynne, D., B. Kaplan & T. Berman, 1991. Phosphorus activities in Lake Kinneret phytoplankton. In: Chróst, R. J. (ed.), Microbial enzymes in aquatic environments. New York: Springer-Verlag, 220–226.

    Google Scholar 

  • Zhao, Y. J. & Y. D. Liu, 1996. Possible microbial control on the adverse impacts of algae: current information about the relationship between algae and microbes. Acta Hydrobiologica Sinica 20(2): 471–475 (In Chinese with English abstract).

    Google Scholar 

  • Zhou, Y. Y. & X. Y. Zhou, 1997. Seasonal variation in kinetic parameters of alkaline phosphatase activity in a shallow Chinese freshwater lake (Donghu Lake). Water Research 31: 1232–1235.

    Article  CAS  Google Scholar 

  • Zhou, Z. Y., Y. Luo, W. Q. Ma & H. J. Cai, 1998. Identification and determination of growth curve of four bacterium isolated from Taihu Lake. Journal of Lake Sciences 10(4): 59–62 (In Chinese with English abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gao, G. (2008). Physiological and Ecological Characteristics of Blue-Green Algae in Lake Taihu. In: Qin, B. (eds) Lake Taihu, China. Monographiae Biologicae, vol 87. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8555-0_5

Download citation

Publish with us

Policies and ethics