Skip to main content

Remote Sensing and GIS Applications for Precision Area-Wide Pest Management: Implications for Homeland Security

  • Chapter

Part of the book series: The GeoJournal Library ((GEJL,volume 94))

Abstract

Area-wide pest management essentially represents coordinated adoption of integrated pest management to conduct preventive suppression of a pest species throughout its geographic distribution. Scientists and researchers in area-wide pest management programs have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field and crop insect pests. Remote sensing, Global Positioning Systems, geographic information systems, and variable rate technology are additional tools that scientists can implement to help farmers maximize the economic and environmental benefits of area-wide pest management through precision agriculture.

Precision area-wide pest management systems were originally developed to reduce the country’s daily risk of natural pest introductions. Now the systems are being developed to reduce the daily risk the country faces of pest introductions, both natural and intentional. Aerial application under precision area-wide pest management strategy is one of the most feasible methods to quickly limit the threat of area-wide pest infestations, which increased after the terrorist attacks of September 11, 2001.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Gaadi, K. A. & Ayers, P. D. (1999). Integrating GIS and GPS into a spatially variable rate herbicide application system. Appl. Eng. Agric., 15(4), 255–262.

    Google Scholar 

  • Elachi, C. (1987). Introduction to the physics and techniques of remote sensing. (New York: Wiley).

    Google Scholar 

  • Green, C. J. (1998). Precision agriculture and cotton production. (In S. K. Esteicher, K. Stefan, & M. Holtz (Eds.), The Science Corner. Lubbock, TX: Department of Physics, Texas Tech University).

    Google Scholar 

  • Isard, S. A., Gage, S. H., Comtois, P. & Russo, J.M. (2005). Principles of the atmospheric pathway for invasive species applied to soybean rust. BioScience, 55, 851–861.

    Article  Google Scholar 

  • Jackson, R. D. (1984). Remote sensing of vegetation characteristics for farm management. SPIE Remote Sens., 475, 81–96.

    Google Scholar 

  • Johannsen, C. J., Barr, D. J. & Barney, T. W. (1977). Remote sensing and applications, Remote sensing applications in extension programs conference, April 1977.

    Google Scholar 

  • Knipling, E. F. & Stadelbacher, E. A. (1983). The rationale for areawide management of Heliothis (Lepidoptera: Noctuidae) populations. Bull. Entomol. Soc. Am., 29, 29–37.

    Google Scholar 

  • Larsen, W. E., Tyler, D. A. & Neilson, G.A. (1988). Field navigation using global positioning system (GPS). ASAE Paper No. 88–1604. St. Joseph, MI: ASAE.

    Google Scholar 

  • Lorenzen, B. & Jensen, A. (1989). Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote Sens. Environ., 27, 201–209.

    Article  Google Scholar 

  • Myers, V. I. (1983). Remote sensing applications in agriculture. (In R. N. Colwell (Ed.), Manual of remote sensing, 2nd ed., Vol. III (pp. 2111–2228). Falls Church, VA: American Society of Photogrammetry).

    Google Scholar 

  • Owe, M. & D’Urso, G. (2002). Remote sensing for agriculture, ecosystems, and hydrology III. (Bellingham, WA: SPIE).

    Google Scholar 

  • Pedigo, L. P. (2002). Entomology and pest management, 4th ed. (691 pp.) (Englewood Cliffs, NJ: Prentice-Hall).

    Google Scholar 

  • Phillips, M. W. & Johannsen, C. J. (1969). Remote sensing in agriculture, agronomy crops and soils notes, Cooperative Extension Service, Purdue University, No. 130, August 1969.

    Google Scholar 

  • Qin, Z., Zhang, M., Christensen, T., Li, W. & Tang, H. (2003). Remote sensing analysis of rice disease stresses for farm pest management using wide-band airborne data, Proceedings. of IEEE International Geoscience and Remote Sensing Symposium, July 2003. Toulouse, France, pp. 2215–2217.

    Google Scholar 

  • Reisig, D. & Godfrey, L. (2006). Remote sensing for detection of cotton aphid–(homoptera: aphididae) and spider mite–(acari: tetranychidae) infested cotton in the San Joaquin Valley. Environ. Entomol., 35(6), 1635–1646.

    Article  Google Scholar 

  • Riedell, W. E., Osborne, S. L. & Hesler, L. S. (2005). Insect pest and disease detection using remote sensing techniques. Meeting Proceedings of 7th International Conference on Precision Agriculture, July 25–28, 2004, Minneapolis, MN.

    Google Scholar 

  • Smith, L. A. & Thomson, S. J. (2005). Performance of an aerial variable-rate application system with a hydraulically powered chemical pump and spray valve. (Paper No. AA05–009. The 39th annual convention of the National Agricultural Aviation Association, Reno, NV).

    Google Scholar 

  • Steve, M. D. & Clark, J. A. (1990). Applications of remote sensing in agriculture. (London: Butterworths).

    Google Scholar 

  • Sudbrink, D. L., Jr., Harris, F. A., Robbins, J. T., Snodgrass, G. L. & Thomson, S. J. (2000). Remote sensing of late-season pest damage to cotton & wild host plants of tarnished plant bug in the Mississippi delta. 2000 National Cotton Council Beltwide Cotton Conference, Vol. 2, pp. 1220–1223.

    Google Scholar 

  • Thurston T., Poiker, T. K., & Moore J. P. (2003). Integrated geospatial technologies: A guide to GPS, GIS and data logging. (New Jersey: Wiley).

    Google Scholar 

  • Westbrook, J. K. & Isard, S. A. (1999). Atmospheric scale of motion for dispersing biota. Agric. Forest Meteorol., 97, 263–274.

    Article  Google Scholar 

  • Willers, J. L., Jenkins, J. N., Ladner, W. L, Gerard, P. D., Boykin, D. L., Hood, K. B., McKibben, P. L., Samson, S. A. & Bethel, M. M. (2005). Site-specific approaches to cotton insect control: Sampling, and remote sensing analyses techniques. Prec. Agri., 6, 431–452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Huang, Y., Lan, Y., Westbrook, J.K., Hoffmann, W.C. (2008). Remote Sensing and GIS Applications for Precision Area-Wide Pest Management: Implications for Homeland Security. In: Sui, D.Z. (eds) Geospatial Technologies and Homeland Security. The GeoJournal Library, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8507-9_12

Download citation

Publish with us

Policies and ethics