Skip to main content

Molecular Markers and the Study of Phylogeny and Genetic Diversity in North American Sturgeons and Paddlefish

  • Chapter
  • 1351 Accesses

Part of the book series: Fish & Fisheries Series ((FIFI,volume 29))

Abstract

For a number of reasons, including their threatened or endangered status and importance in caviar production, much effort has been and is being expended worldwide on the study of the genetic variation of sturgeons and paddlefish. Presented here is a review of the genetic studies that have been conducted on the ten North American acipenseriform taxa and the types of molecular markers that have been used in these studies. The results that have been obtained from this research are invaluable for guiding conservation efforts by increasing our understanding of the relationships among species within the group, identifying intraspecific population structure and shedding light on acipenseriform life history traits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E. 1980. Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA 77:7323–7327.

    Article  PubMed  CAS  Google Scholar 

  • Bailey RM, Cross FB. 1954. River sturgeons of the American genus Scaphirhynchus: characters, distribution and synonymy. Mich Acad Sci, Arts Lett 39:169–208.

    Google Scholar 

  • Birstein VJ, DeSalle R. 1998. Molecular phylogeny of Acipenserinae. Mol Phylogenet Evol 9:141–155.

    Article  PubMed  CAS  Google Scholar 

  • Birstein VJ, Vasiliev VP. 1987. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pisces): karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica 72:3–12.

    Article  Google Scholar 

  • Birstein VJ, Hanner R, DeSalle R. 1997. Phylogeny of the Acipenseriformes: cytogenetic and molecular approaches. Environ Biol Fish 48:127–155.

    Article  Google Scholar 

  • Birstein VJ, Doukakis P, DeSalle R. 2002. Molecular phylogeny of Acipenseridae: nonmonophyly of Scaphirhynchidae. Copeia 2:287–301.

    Article  Google Scholar 

  • Bowen BW, Avise JC. 1990. Genetic-structure of Atlantic and Gulf of Mexico populations of sea bass, menhaden, and sturgeon—influence of Zoogeographie factors and life-history patterns. Mar Biol 107:371–381.

    Article  Google Scholar 

  • Brown JR, Beckenbach AT, Smith MJ. 1992. Influence of Pleistocene glaciations and human intervention upon mitochondrial-DNA diversity in white sturgeon (Acipenser transmontanus) populations. Can J Fish Aquat Sci 49:358–367.

    Article  Google Scholar 

  • Brown JR, Beckenbach AT, Smith MJ. 1993. Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol Biol Evol 10:326–341.

    PubMed  CAS  Google Scholar 

  • Brown JR, Beckenbach K, Beckenbach AT, Smith MJ. 1996. Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). Genetics 142:525–535.

    PubMed  CAS  Google Scholar 

  • Burke JS, Ramsey JS. 1995. Present and recent historic habitat of the Alabama sturgeon, Scaphirhynchus suttkusi Williams and Clemmer, in the Mobile Basin. Bull Alab State Mus Nat Hist 17:17–24.

    Google Scholar 

  • Campton DE, Garcia AI, Bowen BW, Chapman FA. 1995. Genetic evaluation of pallid, shovel-nose, and Alabama sturgeon (Scaphirhynchus albus, S. platorynchus, and S. suttkusi) based on control region (D-loop) sequences of mitochondrial DNA. Final Report to the U.S. Fish and Wildlife Service, Bismarck, North Dakota, 35 pp.

    Google Scholar 

  • Campton D, Bass AL, Chapman FA, Bowen BW. 2000. Genetic distinction of pallid, shovelnose and Alabama sturgeon: emerging species and the US Endangered Species Act. Conserv Genet 1:17–32.

    Article  CAS  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR. 2002. The comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron and other RNAs. BMC Bioinfonnat 3:2 (correction: BMC Bioinformat 3:15.

    Article  Google Scholar 

  • Carlson DM, Kettler MK, Fisher SE, Whitt GS. 1982. Low genetic variability in paddlefish populations. Copeia 3:721–723.

    Article  Google Scholar 

  • Carlson DM, Pflieger WL, Trial L, Haverland PS. 1985. Distribution, biology and hybridization of Scaphirhynchus albus and S. platorynchus in the Missouri and Mississippi rivers. Environ Biol Fish 14(1):51–59.

    Article  Google Scholar 

  • Chermock RL. 1955. First record of the shovelnose sturgeon, Scaphirhynchus platorhynchus, from Tombigbee River Alabama. Copeia 1955:154.

    Article  Google Scholar 

  • Collins MR, Cooke D, Post B, Crane J, Bulak J, Smith TIJ, Greig TW, Quattro JM. 2003. Shortnose sturgeon in the Santee-Cooper reservoir system, South Carolina. Trans Am Fish Soc 132:1244–1250.

    Article  Google Scholar 

  • DeHaan PW, Libants SV, Elliot RF, Scribner KT. 2006. Genetic population structure of remnant lake sturgeon populations in the upper Great Lakes basin. Trans Am Fish Soc 135:1478–1492.

    Article  CAS  Google Scholar 

  • Dovel WL, Berggren TJ. 1983. Atlantic sturgeon of the Hudson estuary, New York. NY Fish Game J 30:140–172.

    Google Scholar 

  • Dugo MA, Kreiser BR, Ross ST, Slack WT, Heise RJ, Bowen BR. 2004. Conservation and management implications of fine-scale genetic structure of Gulf sturgeon in the Pascagoula River, Mississippi. J Appl Ichthyol 20:243–251.

    Article  Google Scholar 

  • Epifanio JM, Koppelman JB, Nedbal MA, Philipp DP. 1996. Geographic variation of paddlefish allozymes and mitochondrial DNA. Trans Am Fish Soc 125:546–561.

    Article  Google Scholar 

  • Ferguson MM, Duckworth GA. 1997. The status and distribution of lake sturgeon, Acipenser fulvescens, in the Canadian provinces of Manitoba, Ontario and Quebec: a genetic perspective. Environ Biol Fish 48:299–309.

    Article  Google Scholar 

  • Ferguson MM, Bernatchez L, Gatt M, Konkle BR, Lee S, Malott ML, McKinley RS. 1993. Distribution of mitochondrial DNA variation in lake sturgeon (Acipenser fulvescens) from the Moose River basin, Ontario, Canada. J Fish Biol 43(Suppl. A):91–101.

    CAS  Google Scholar 

  • Fontana F, Tagliavini J, Congiu L. 2001. Sturgeon genetics and cytogenetics: recent advances and perspectives. Genetica 111:359–373.

    Article  PubMed  CAS  Google Scholar 

  • Genetic Analyses, Inc. 1994. Genetic studies of Scaphirhynchus spp. Unpublished report for the U.S. Army Corps of Engineers, Omaha District; U.S. Fish and Wildlife Service, Bismarck, North Dakota; U.S. Army Corps of Engineers, Mobile District.

    Google Scholar 

  • Grunwald C, Stabile J, Waldman JR, Gross R, Wirgin I. 2002. Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences. Mol Ecol 11:1885–1898.

    Article  PubMed  CAS  Google Scholar 

  • Guénette S, Fortin R, Rassart E. 1993. Mitochondrial DNA variation in lake sturgeon (Acipenser fulvescens) from the St. Lawrence River and James Bay drainage basins in Quebec, Canada. Can J Fish Aquat Sci 50:659–664.

    Article  Google Scholar 

  • Heist EJ, Nicholson EH, Sipiroski JT, Keeney DB. 2002. Microsatellite markers for the American paddlefish (Polyodon spathula). Conserv Genet 3:205–207.

    Article  CAS  Google Scholar 

  • Henderson-Arzapalo A, King TL. 2002. Novel microsatellite markers for Atlantic sturgeon (Acipenser oxyrinchus) population delineation and broodstock management. Mol Ecol Notes 2:437–439.

    Article  CAS  Google Scholar 

  • Israel JA, Cordes JF, Blumberg MA, May B. 2004. Geographic patterns of genetic differentiation among collections of green sturgeon. N Am J Fish Manag 24:922–931.

    Article  Google Scholar 

  • King TL, Lubinski BA, Spidle AP. 2001. Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv Genet 2:103–109.

    Article  CAS  Google Scholar 

  • Kohne DE. 1970. Evolution of higher-organism DNA. Quart Rev Biophys 33:327–375.

    Article  Google Scholar 

  • Krieger J, Fuerst PA. 2002a. Evidence for a slowed rate of molecular evolution in the order Acipenseriformes. Mol Biol Evol 19(6):891–897.

    PubMed  CAS  Google Scholar 

  • Krieger J, Fuerst PA. 2002b. Evidence of multiple alleles of the nuclear 18S ribosomal RNA gene in sturgeon (Family: Acipenseridae). J Appl Ichthyol 18:290–297.

    Article  CAS  Google Scholar 

  • Krieger J, Fuerst PA. 2004. Diversity of nuclear 18S rRNA gene sequences within individuals in Lake Sturgeon (Acipenser fulvescens). J Appl Ichthyol 20:433–439.

    Article  CAS  Google Scholar 

  • Krieger J, Fuerst PA, Cavender TM. 2000. Phylogenetic relationships of the North American sturgeons (Order Acipenseriformes) based on mitochondrial DNA sequences. Mol Phylogenet Evol 16(1):64–72.

    Article  PubMed  CAS  Google Scholar 

  • Krieger J, Hett AK, Fuerst PA, Birstein VJ, Ludwig A. 2006. Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae. J Hered 97(3):218–225.

    Article  PubMed  CAS  Google Scholar 

  • Krieger J, Hett AK, Fuerst PA, Artyukhin E, Ludwig A. 2008. The molecular phylogeny of the order Acipenseriformes revisited. J. Appl Ichthyol 24 (Suppl. 1):36–45.

    Article  Google Scholar 

  • Lee DS. 1980a. Scaphirhynchus albus (Forbes & Richardson) pallid sturgeon. In: DS Lee, CR Gilbert, CH Hocutt, RE Jenkins, DE McAllister, JR Stauffer (eds.), Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History, Raleigh, NC, p. 43.

    Google Scholar 

  • Lee DS. 1980b. Scaphirhynchus platorhynchus (Rafinesque) shovelnose sturgeon. In: DS Lee, CR Gilbert, CH Hocutt, RE Jenkins, DE McAllister, JR Stauffer (eds.), Atlas of North American Freshwater Fishes. North Carolina State Museum of Natural History, Raleigh, NC, p. 44.

    Google Scholar 

  • Li W-H, Tanimura M, Sharp PM. 1987. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342.

    Article  PubMed  CAS  Google Scholar 

  • Li W-H, Ellesworth DL, Krushkal J, Chang BH-J, Hewett-Emmett D. 1996. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylogenet Evol 5:182–187.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I. 2001. Genome duplication events and functional reduction in ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158:1203–1215.

    PubMed  CAS  Google Scholar 

  • Martin AP. 1999. Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again). Mol Biol Evol 16:996–1002.

    PubMed  CAS  Google Scholar 

  • Martin AP, Palumbi SR. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091.

    Article  PubMed  CAS  Google Scholar 

  • May B, Krueger CC, Kincaid HL. 1997. Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci 54:1542–1547.

    Article  CAS  Google Scholar 

  • Mayden RL, Kuhadja BR. 1996. Systematics, taxonomy and conservation status of the endangered Alabama sturgeon, Scaphirhynchus suttkusi Williams and Clemmer (Actinopterygii, Acipenseridae). Copeia 2:241–273.

    Article  Google Scholar 

  • McQuown E, Sloss BL, Sheehan RJ, Rodzen J, Tranah G, May B. 2000. Microsatellite analysis of genetic variation in sturgeon: new sturgeon primer sequences for Scapirhynchus and Acipenser. Trans Am Fish Soc 139:1380–1388.

    Article  Google Scholar 

  • McQuown E, Gall GAE, May B. 2002. Characterization and inheritance of six microsatellite loci in lake sturgeon. Trans Am Fish Soc 11:299–307.

    Article  Google Scholar 

  • McQuown E, Krueger CC, Kincaid HL, Gall GAE, May B. 2003. Genetic comparison of lake sturgeon populations: differentiation based on allelic frequencies at seven microsatellite loci. J Great Lakes Res 29:3–13.

    Article  Google Scholar 

  • Miracle AL, Campton DE. 1995. Tandem repeat sequence variation and length heteroplasmy in the mitochondrial DNA D-loop of the threatened Gulf of Mexico sturgeon, Acipenser oxyrhynchus desotoi. J Hered 86:22–27.

    PubMed  CAS  Google Scholar 

  • Mooers AØ, Harvey PH. 1994. Metabolic rate, generation time and the rate of molecular evolution in birds. Mol Phylogenet Evol 3:344–350.

    Article  PubMed  CAS  Google Scholar 

  • Ohta T. 1993. An examination of the generation time effect on molecular evolution. Proc Natl Acad Sci USA 90:10676–10680.

    Article  PubMed  CAS  Google Scholar 

  • Ong T-L, Stabile J, Wirgin I, Waldman JR. 1996. Genetic divergence between Acipenser oxyrinchus oxyrinchus and A. o. desotoi as assessed by mitochondrial DNA sequencing analysis. Copeia 2:464–469.

    Article  Google Scholar 

  • Phelps SR, Allendorf FW. 1983. Genetic identity of pallid and shovelnose sturgeon (Scaphirhynchus albus and S. platorynchus). Copeia 3:696–700.

    Article  Google Scholar 

  • Pyatskowit JD, Krueger CC, Kincaid HL, May B. 2001. Inheritance of microsatellite loci in the polyploid lake sturgeon (Acipenser fulvescens). Genome 44:185–191.

    Article  PubMed  CAS  Google Scholar 

  • Quattro JM, Greig TW, Coykendall DK, Bowen BW, Baldwin JD. 2002. Genetic issues in aquatic species management: the shortnose sturgeon (Acipenser brevirostrum) in the southeastern United States. Conserv Genet 3:155–166.

    Article  CAS  Google Scholar 

  • Robinson MR, Ferguson MM. 2004. Genetics of North American Acipenseriformes. In: GTO LeBreton, FWH Beamish, RS McKinley (eds.), Sturgeons and Paddlefish of North America. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 217–230.

    Google Scholar 

  • Scott WB, Crossman EJ. 1973. Freshwater Fishes of Canada. Fisheries Research Board of Canada Bulletin, Ottawa, 184, 966 pp.

    Google Scholar 

  • Simons AM, Wood RM, Heath LS, Kuhajda BR, Mayden RL. 2001. Phylogenetics of Scaphirhynchus based on mitochondrial DNA sequences. Trans Am Fish Soc 130:359–366.

    Article  CAS  Google Scholar 

  • Smith CT, Nelson RJ, Pollard S, Rubidge E, McKay SJ, Rodzen J, May B, Koop B. 2002. Population genetic analysis of white sturgeon (Acipenser transmontanus) in the Fraser River. J Appl Ichthyol 18(4–6):307–312.

    Article  Google Scholar 

  • Smith TIJ. 1985. The fishery, biology, and management of Atlantic sturgeon, Acipenser oxyrhynchus, in North America. Environ Biol Fish 14:61–72.

    Article  CAS  Google Scholar 

  • Szalanski AL, Bischof R, Mestl G. 2000. Population genetic structure of Nebraska paddlefish based on mitochondrial DNA variation. Trans Am Fish Soc 129:1060–1065.

    Article  CAS  Google Scholar 

  • Tagliavini J, Conterio F, Gandolfi G, Fontana F. 1999. Mitochondrial DNA sequences of six sturgeon species and phylogenetic relationships within Acipenseridae. J Appl Ichthyol 15:17–22.

    Article  CAS  Google Scholar 

  • Tajima F. 1993. Simple methods for testing molecular clock hypothesis. Genetics 135:599–607.

    PubMed  CAS  Google Scholar 

  • Takezaki N, Razhetsky A, Nei M. 1995. Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833.

    PubMed  CAS  Google Scholar 

  • Taubert BD. 1980. Reproduction of shortnose sturgeon (Acipenser brevirostrum) in Holyoke Pool, Connecticut River, Massachusetts. Copeia 1980:114–117.

    Article  Google Scholar 

  • Tranah GJ, Kincaid HL, Krueger CC, Campton DE, May B. 2001. Reproductive isolation in sympatric populations of pallid and shovelnose sturgeon. Trans Am Fish Soc 21:367–373.

    Google Scholar 

  • Tranah G, Campton DE, May B. 2004. Genetic evidence for hybridization of pallid and shovel-nose sturgeon. J Hered 95(6):474–480.

    Article  PubMed  CAS  Google Scholar 

  • U.S. National Marine Fisheries Service. 1996. Status Review of Shortnose Sturgeon in the Androscoggin and Kennebec Rivers. Northeast Regional Office, National Marine Fisheries Service, Gloucester, MA.

    Google Scholar 

  • U.S. National Marine Fisheries Service. 1998. Final Recovery Plan for the Shortnose Sturgeon (Acipenser brevirostrum). National Marine Fisheries Service, Silver Springs, MD.

    Google Scholar 

  • Waldman JR, Hart JT, Wirgin II. 1996a. Stock composition of the New York Bight Atlantic sturgeon fishery based on analysis of mitochondrial DNA. Trans Am Fish Soc 125:364–371.

    Article  CAS  Google Scholar 

  • Waldman JR, Nolan K, Hart J, Wirgin II. 1996b. Genetic differentiation of three key anadromous fish populations of the Hudson River. Estuaries 19:759–768.

    Article  Google Scholar 

  • Waldman JR, Grunwald C, Stabile J, Wirgin I. 2002. Impacts of life history and biogeography on the genetic stock structure of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, Gulf sturgeon A. oxyrinchus desotoi, and A. brevirostrum. J Appl Ichthyol 18:509–518.

    Article  Google Scholar 

  • Walsh MG, Bain MB, Squiers Jr T, Waldman JR, Wirgin I. 2001. Morphological and genetic variation among shortnose sturgeon Acipenser brevirostrum from adjacent and distant rivers. Estuaries 24(1):41–48.

    Article  Google Scholar 

  • Welsh A, May B. 2006. Development and standardization of disomic microsatellite markers for lake sturgeon genetic studies. J Appl Ichthyol 22:337–344.

    Article  CAS  Google Scholar 

  • Welsh AB, McClain JR. 2004. Development of a management plan for lake sturgeon within the Great Lakes based on population genetics structure. Final project report, Great Lakes Fishery Trust Project Number 2001.75, September 29, 2004.

    Google Scholar 

  • Welsh AB, Blumberg M, May B. 2003. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol Ecol Notes 3:47–55.

    Article  CAS  Google Scholar 

  • Williams JD, Clemmer GH. 1991. Scaphirhynchus suttkusi, a new sturgeon (Pisces: Acipenseridae) from the Mobile Basin of Alabama and Mississippi. Bull Alab State Mus Nat Hist 10:17–31.

    Google Scholar 

  • Wirgin II, Stabile JE, Waldman JR. 1997. Molecular analysis in the conservation of sturgeons and paddlefish. Environ Biol Fish 48:385–398.

    Article  Google Scholar 

  • Wirgin I, Waldman J, Rosko J, Gross R, Collins MR, Rogers SG, Stabile J. 2000. Genetic structure of Atlantic sturgeon populations based on mitochondrial DNA control region sequences. Trans Am Fish Soc 129:476–486.

    Article  CAS  Google Scholar 

  • Wirgin I, Waldman J, Stabile J, Lubinski B, King T. 2002. Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus. J Appl Ichthyol 18:313–319.

    Article  CAS  Google Scholar 

  • Wirgin I, Grunwald C, Carlson E, Stabile J, Peterson DL, Waldman J. 2005. Range-wide population structure of shortnose sturgeon Acipenser brevirostrum based on sequence analysis of the mitochondrial DNA control region. Estuaries 28(3):406–421.

    Article  CAS  Google Scholar 

  • Wooley CM. 1985. Evaluation of morphometric characters used in taxonomic separation of Gulf of Mexico sturgeon, Acipenser oxyrhynchus desotoi. In: FP Binkowski, SI Doroshov (eds.), North American Sturgeons: Biology and Aquaculture Potential. Dr W Junk Publishers, Dordrecht, pp. 97–103.

    Google Scholar 

  • Wooley CM, Crateau E. 1985. Movement, microhabitat, exploitation, and management of Gulf of Mexico sturgeon, Apalachicola River, Florida. N Am J Fish Manag 5:590–605.

    Article  Google Scholar 

  • Zhang S, Zhang Y, Zheng X, Chen Y, Deng H, Wang D, Wei Q, Zhang Y, Nie L, Wu Q. 2000. Molecular phylogenetic systematics of twelve species of Acipenseriformes based on mtDNA ND4L-ND4 gene sequence analysis. Sci China (Series C) 43(2): 129–137.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Krieger, J., Fuerst, P.A. (2009). Molecular Markers and the Study of Phylogeny and Genetic Diversity in North American Sturgeons and Paddlefish. In: Carmona, R., Domezain, A., García-Gallego, M., Hernando, J.A., Rodríguez, F., Ruiz-Rejón, M. (eds) Biology, Conservation and Sustainable Development of Sturgeons. Fish & Fisheries Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8437-9_4

Download citation

Publish with us

Policies and ethics