Skip to main content

Analysis of Mitochondrial and Nuclear DNA Markers in Old Museum Sturgeons Yield Insights About the Species Existing in Western Europe: A. sturio, A. naccarii and A. oxyrinchus

  • Chapter
Biology, Conservation and Sustainable Development of Sturgeons

Abstract

Today, with all the sturgeon species almost disappearing all over the world, it is necessary to undertake their recovery under the programs for the conservation of genetic resources. The complete absence of these fish from most rivers increases the difficulties in carrying out such programs, hampering the genetic identification of specimens and their correct species assignment. However, with the development of new and reliable molecular genetic techniques, many studies such as this are yielding insights concerning the sturgeon species that inhabited European rivers in the past. In the last few years, our group has developed forensic techniques to isolate DNA from ancient sturgeon specimens preserved in museums. These DNA samples have been the subject of various analyses conducted on several nuclear and mitochondrial DNA markers. The combined use of both types of markers has provided accurate genetic identification of these specimens and has overcome the problem of misinterpretation caused by hybridization and introgression. Here, we show that, in addition to Acipenser sturio (the only species previously believed to inhabit the rivers of Western Europe), two other species, Acipenser naccarii and Acipenser oxyrinchus lived in these rivers. Thus, we have found evidence for the presence of A. naccarii in the Guadalquivir river in the Iberian Peninsula and in some rivers in Italy from the Tyrrhenian/Ligurian side, as well as for the presence of A. oxyrinchus in the Ebro river in Spain. Our studies clarify the distribution of sturgeon species in the Western Mediterranean and open new perspectives for recovery plans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almodóvar A, Machordom A and Suárez J. (2000) Preliminary results from characterization of the Iberian Peninsula sturgeon based on analysis of the mtDNA cytochrome b. Boletin Instituto Español de Oceanografía 16: 17–27.

    Google Scholar 

  • Arefjev VA. (1997) Sturgeons hybrids: natural reality and practical prospects. Aquaculture Magazine 7/8: 52–58.

    Google Scholar 

  • Arnason U and Widegren B. (1986) Pinniped phylogeny enlightened by molecular hybridization using highly repetitive DNA. Molecular Biology and Evolution 3: 356–365.

    CAS  Google Scholar 

  • Arnason U, Grétarsdôttir S and Widegren B. (1992) Mystecete (baleen whale) relationships based upon the sequence of the common cetacean DNA satellite. Molecular Biology and Evolution 9: 1018–1028.

    PubMed  CAS  Google Scholar 

  • Artyukhin EN. (1995) On biogeography and relationships within the genus Acipenser. Sturgeon Quercus 3: 6–8.

    Google Scholar 

  • Billard R. (2000) Esturgeons et caviar. In: Lavoisier (ed.), Rapport et Contract Life. B4-3200/94/750, Esturgeons, Paris, 298 pp.

    Google Scholar 

  • Birstein VJ and DeSalle R. (1998) Molecular phylogeny of Acipenserinae. Molecular Phylogenetics and Evolution 9: 141–155.

    Article  PubMed  CAS  Google Scholar 

  • Birstein VJ and Doukakis P. (2000) Molecular analysis of Acipenser sturio L., 1758 and Acipenser oxyrinchus Mitchill, 1815: a review. Boletín Instituto Español de Oceanografía 16: 61–73.

    Google Scholar 

  • Birstein VJ, Doukakis P, Sorkin B et al. (1998) Population aggregation analysis of three caviarproducing species of sturgeons and implications for the species identification of black caviar. Conservation Biology 12: 766–775.

    Article  Google Scholar 

  • Birstein VJ, Doukakis P and DeSalle R. (2002) Molecular phylogeny of Acipenseridae: nonmonophyly of Scaphirhynchinae. Copeia 2: 287–301.

    Article  Google Scholar 

  • Birstein VJ, Ruban G, Ludwig A et al. (2005) The enigmatic Caspian Sea Russian sturgeon: How many cryptic forms does it contain? Systematics and Biodiversity 3: 203–218.

    Article  Google Scholar 

  • Capello FB. (1869) Catalogo dos peixes do Portugal que existem no Museo de Lisboa. Jorn. Sci. Math. Phys. Nat. Jornal de Sciencias Mathematicas, Physicas e Naturaes da Academia Real das Sciencias de Lisboa. (1a sér) 2: 131–193.

    Google Scholar 

  • Choudhury A and Dick TA. (1998) The historical biogeography of sturgeons (Osteichthyes: Acipenseridae): a synthesis of phylogenetics, palaeontology and palaeography. Journal of Biogeography 25: 623–640.

    Article  Google Scholar 

  • De la Herrán R, Fontana F, Lanfredi M et al. (2001a) Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Molecular Biology and Evolution 18: 432–436.

    Google Scholar 

  • De la Herrán R, Ruiz Rejón C, Ruiz Rejón M et al. (2001b) The molecular phylogeny of the Sparidae (Pisces, Perciformes) based on two satellite DNA families. Heredity 87: 691–697.

    Article  PubMed  Google Scholar 

  • De la Herrán R, Robles F, Martínez-Espín E et al. (2004) Genetic identification of western Mediterranean sturgeons and its implication for conservation. Conservation Genetics 5: 545–551.

    Article  Google Scholar 

  • Dover G. (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends in Genetics 2: 159–165.

    Article  CAS  Google Scholar 

  • Elder Jr JF and Turner BJ. (1994) Concerted evolution at the population level: pupfish HindIII satellite DNA sequences. Proceedings of the Natural Academy of Sciences USA 9: 994–998.

    Article  Google Scholar 

  • Elder Jr JF and Turner BJ. (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. The Quarterly Review of Biology 70: 297–320.

    Article  PubMed  CAS  Google Scholar 

  • Fontana F. (2002) A cytogenetic approach to the study of taxonomy and evolution in sturgeons. Journal of Applied Ichthyology 18: 226–233.

    Article  Google Scholar 

  • Fontana F, Lanfredi M, Kirschbaum F et al. 2008. Comparison of karyotypes of Acipenser oxyrinchus and A. sturio by chromosome banding and fluorescent in situ hybridization. Genetica 132: 281–286.

    Article  PubMed  Google Scholar 

  • Franck JPC, Kornield I and Wright JM. (1994) The utility of SATA satellite DNA sequences for inferring phylogenetic relationships among the tree major genera of tilapiine fishes. Molecular Phylogenetics and Evolution 3: 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Garrido-Ramos MA, Jamilena M, Lozano R et al. (1995) Phylogenetic relationships of the Sparidae family (Pisces, Perciformes) inferred from satellite-DNA. Hereditas 122: 1–6.

    Article  Google Scholar 

  • Garrido-Ramos MA, Soriguer C, De la Herrán R et al. (1997) Morphometric and genetic analysis as proof of the existence of two sturgeon species in the Guadalquivir river. Marine Biology 129: 33–39.

    Article  Google Scholar 

  • Garrido-Ramos MA, De la Herrán R, Jamilena M et al. (1999) Evolution of centromeric satellite DNA and its use in phylogenetic studies of Sparidae family (pisces, Perciformes). Molecular Phylogenetics and Evolution 12: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Gasent-Ramírez JM, Godoy JA and Jordano P. (2001) Identificación de esturiones procedentes del Guadaluivir mediante análisis de ADN en especímenes de museo. Medio Ambiente. Publicaciones de la Consejería de Medio Ambiente de la Junta de Andalucía 36: 44–49.

    Google Scholar 

  • Gonçalves BC. (1942) Colcçaõ oceanográfic de D. Carlos I. Peixes Trav. Stn. Biol. Marit. Lisb. Travaux de la Station de biologie Maritime de Lisbonne. 46: 1–108.

    Google Scholar 

  • Grétarsdóttir G and Arnason U. (1992) Evolution of the common cetacean highly repetitive DNA component and the systematic position of Orcaella brevirostris. Journal of Molecular Evolution 34: 201–208.

    Article  PubMed  Google Scholar 

  • Hartley SE and Davidson WS. (1994a) Distribution of satellite DNA sequences isolated from Arctic char; Salvelinus alpinus, in the genus Salvelinus. Canadian Journal of Fisheries and Aquatic Sciences 51: 277–283.

    Article  CAS  Google Scholar 

  • Hartley SE and Davidson WS. (1994b) Characterization and distribution of genomic repeat sequences from arctic char (Salvelinus alpinus). In: Beamont AR (ed.), Genetics and Evolution of Aquatic Organisms. Chapman and Hall, London, pp. 271–279.

    Google Scholar 

  • Heikkinen E, Launonen V, Muller E et al. (1995) The pvB370 BamHI satellite DANN family of the Drosophila viridis group and the evolutionary relation to mobile dispersed genetic pDv elements. Journal of Molecular Evolution 41: 604–614.

    Article  PubMed  CAS  Google Scholar 

  • Jenneckens I, Meyer JN, Hörstgen-Schwark G et al. (2001) A fixed allele at microsatellite LS-39 is characteristic fort he black caviar producer Acipenser stellatus. Journal of Applied Ichthyology 17: 39–42.

    Article  CAS  Google Scholar 

  • Kirschbaum F, Wuertz S, Williot P et al. (2008) Prerequisites for the restoration of the European Atlantic sturgeon, Acipenser sturio and the Baltic sturgeon (A. oxyrinchus × A. sturio) in Germany. In: Carmona R et al., editors. Biology, Conservation and Sustainable Development of Sturgeons. Berlin: Springer, p 385–402.

    Google Scholar 

  • Krieger J and Fuerst PA. (2002) Evidence for a slowed rate of molecular evolution in the Order Acipenseriformes. Molecular Biology and Evolution 19: 891–897.

    PubMed  CAS  Google Scholar 

  • Krieger J, Fuerst PA and Cavender T. (2000) Phylogenetic relationships of North American sturgeons (order Acipenseriformes) based on mitochondrial DANN sequences. Molecular Phylogenetics and Evolution 16: 64–72.

    Article  PubMed  CAS  Google Scholar 

  • Lanfredi M, Congiu L, Garrido-Ramos MA et al. (2001) Chromosomal location and evolution of satellite DNA family in seven sturgeon species. Chromosome Research 9: 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A and Kirschbaum F. (1998) Comparison of mitochondrial DNA sequences between the European and the Adriatic sturgeon. Journal of Fish Biology 52: 1289–1291.

    Article  CAS  Google Scholar 

  • Ludwig AN, Jenneckens I, Debus L et al. (2000) Genetic analyses of archival specimens of the Atlantic sturgeon Acipenser sturio L., 1758. Boletin Espanol de Oceanografia 16: 181–190.

    Google Scholar 

  • Ludwig A, Belfiore NM, Pitra C et al. (2001) Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 158: 1203–1215.

    PubMed  CAS  Google Scholar 

  • Ludwig A, Debus I, Lieckfeldt D et al. (2002) When the American sea sturgeon swam east. Nature 419: 447–448.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig A, Congiu L, Pitra C et al. (2003) Nonconcordant evolutionary history of maternal and paternal lineages in Adriatic sturgeon. Molecular Ecology 12: 3253–3264.

    Article  PubMed  CAS  Google Scholar 

  • Magnin E and Beaulieau G. (1963) Étude morphométrique comparée de l’Acipenser oxyrinchus Mitchill du Saint-Laurent et l’Acipenser sturio Linné de la Gironde. Naturaliste Canadian 90: 5–38.

    Google Scholar 

  • Martin AP. (1999) Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rte (again). Molecular Biology and Evolution 16: 996–1002.

    PubMed  CAS  Google Scholar 

  • Martin AP, Naylor GJP and Palumbi SR. (1992) Rates of mitochondrial DNA evolution in sharks are slow compared to mammals. Nature 357: 153–155.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Espín E, Martínez-Gonzalez LJ, Álvarez JC, Roby RK, Lorente JA. (2008) Forensic strategies for DNA extraction of ancient and degraded sturgeon samples. In: Carmona R et al., editors. Biology, Conservation and Sustainable Development of Sturgeons. Berlin: Springer, p 85–96.

    Google Scholar 

  • McDowall MR. (1999) Different kinds of diadromy: Different kinds of conservation problems. ICES Journal of Marine Sciences 56: 410–413.

    Article  Google Scholar 

  • Mestrovic M, Mravinac CB, Juan C et al. (2000) Comparative study of satellite sequences and phylogeny of five species from the genus Polarus (Insecta, Coleoptera). Genome 43: 776–785.

    Article  PubMed  CAS  Google Scholar 

  • Mravinac B, Plohl M, Meštrović N et al. (2002) Sequence of PRAT satellite DNA ‘frozen’ in some Coleopteran species. Journal of Molecular Evolution 54: 774–783.

    Article  PubMed  CAS  Google Scholar 

  • Murata S, Takasaki N, Saitoh M et al. (1993) Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proceedings of the Natural Academy of Sciences USA 90: 6995–6999.

    Article  CAS  Google Scholar 

  • Ohta T and Dover G. (1984) The cohesive population genetics of molecular drive. Genetics 108: 501–521.

    PubMed  CAS  Google Scholar 

  • Porres A and Farnós A. (1999) Evolució al segle XX de les poblacions d’esturió (Acipenser sturio) al riu Ebre. In: Fernández-Colomé JV, Farnós A (eds.), Els esturions (el cas del riu Ehre). Generalitat de Catalunya, Tarragona, pp. 93–112.

    Google Scholar 

  • Rico C, Rico I and Hewitt G. (1996) 470 million years of conservation of microsatellite loci among fish species. Proceedings of the Royal Society of London Series B 263: 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Rincón PA. (2000) Putative morphometric evidence of the presence of Acipenser naccarii Bonaparte, 1836 in Iberian rivers, or why ontogenetic allometry needs adequate treatment. Boletín Instituto Español de Oceanografía 16: 217–229.

    Google Scholar 

  • Robles F, De la Herrán R, Ludwig A et al. (2004) Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Robles F, De la Herrán R, Ludwig A et al. (2005) Evolution of 5S ribosomal genes in sturgeons. Genome 48: 1–11.

    Article  Google Scholar 

  • Ruiz Rejón M, De la Herrán R, Ruiz Rejón C et al. (2000) Genetic characterization of Acipenser sturio L., 1758 in relation to other sturgeon species using satellite DNA. Boletín Instituto Español de Oceanografía 16: 231–236.

    Google Scholar 

  • Sala J, Montón Chiva E, Escrig Barberá J, et al (2001) Nuestro porvenir climático: un escenario de aridez?. Castelló de la Plana, Spain: Colleccio Athenea n∘5, Publicacions de la Universitat Jaume I. 224 p.

    Google Scholar 

  • Schweizer D and Loidl J. (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. In: Hayman DL, Rofe RH, Sharp PJ (eds.), Chromosomes Today, vol. 9. Allen & Unwin, London, pp. 61–74.

    Google Scholar 

  • Stepien CA, Kocher TD. (1997) Molecules and morphology in studies of fish evolution. In: Kocher TD, Stepien SD (eds.), Molecular Systematics of Fishes. Academic, San Diego, pp. 1–11.

    Chapter  Google Scholar 

  • Svetovidov AN. (1989) Acipenseridae. In: Whitehead PJP, Bauchot ML, Tortonese E (eds.), Fishes of North-eastern Atlantic and Mediterranean, 2nd edn. UNESCO, Paris, pp. 200–225.

    Google Scholar 

  • Ugarković D and Plohl M. (2002) Variation in satellite DNA profiles—causes and effects. EMBO J 21: 5955–5959.

    Article  PubMed  Google Scholar 

  • Van Den Busche RA, Baker RJ, Wichman HA et al. (1993) Molecular phylogenetics of Stenodermatini bat genera: congruence o data from nuclear and mitochondrial DNA. Molecular Biology and Evolution 10: 944–959.

    Google Scholar 

  • Williot P, Rochard E, Rouault T and Kirschbaum F. (2008) Acipenser sturio recovery research actions in France. In: Carmona R et al., editors. Biology, Conservation and Sustainable Development of Sturgeons. Berlin: Springer, p 251–68.

    Google Scholar 

  • Williot P, Sabeau L, Gessner J et al. (2001) Sturgeon farming in Western Europe: recent developments and perspectives. Aquatic Living Resources 14: 367–374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Garrido-Ramos, M.A. et al. (2009). Analysis of Mitochondrial and Nuclear DNA Markers in Old Museum Sturgeons Yield Insights About the Species Existing in Western Europe: A. sturio, A. naccarii and A. oxyrinchus . In: Carmona, R., Domezain, A., García-Gallego, M., Hernando, J.A., Rodríguez, F., Ruiz-Rejón, M. (eds) Biology, Conservation and Sustainable Development of Sturgeons. Fish & Fisheries Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8437-9_2

Download citation

Publish with us

Policies and ethics