Skip to main content

Iron and Erythrocytes: Physiological and Pathophysiological Aspects

  • Chapter
Book cover Oxidants in Biology

It is generally accepted that iron when released from the macromolecular complexes (ferritin, transferrin, heme proteins, etc.) normally sequestering it, represents a source of oxidative stress. The reductive release of iron from ferritin has received extensive consideration, while the release of iron in an oxidative manner from heme proteins has been relatively little studied. We have shown that iron is released from hemoglobin or heme in a non protein-bound desferrioxamine-chelatable form (DCI) in a number of conditions in which the erythrocytes are subjected to oxidative stress. Such conditions can be related to toxicological events (haemolytic drugs) or to physiological situations (erythrocyte ageing, reproduced in a model of prolonged aerobic incubation) or pathological conditions (thalassemia, diabetes mellitus), but can also result from more subtle circumstances in which a state of ischemia-reperfusion is imposed on erythrocytes (e.g. childbirth). The released iron could play a central role in oxidation of membrane proteins, in particular band 3 protein, and in autologous IgG binding, one of the major pathways for erythrocyte removal. Iron chelators able to enter cells (such as ferrozine, quercetin, and fluorbenzoil- pyridoxalhydrazone) prevent both membrane protein oxidation and IgG binding. The increased release of iron observed in –thalassemia patients and newborns (particularly premature babies) suggests that fetal hemoglobin is more prone to release iron than adult hemoglobin. In newborns the release of iron in erythrocytes is correlated with plasma non-protein-bound iron and may contribute to its appearance. Since disulfide-cross-linked band 3 dimers are the minimal aggregates with enhanced affinity for autologous IgG, we have observed that such oxidatively modified band 3 is present in a much higher percentage of newborns (especially premature) than of adults and that a correlation between free iron level and IgG binding is evident in erythrocytes. The IgG binding is present also in a much higher percentage of diabetic subjects than of controls. Iron release is higher in diabetic erythrocytes showing IgG binding and a significant correlation between iron release and IgG binding is also evident. Therefore a large part of newborn (and possibly thalassemic) and diabetic erythrocytes are ready to be eliminated. Thus the iron appears an element of conflicting effect, it can be either beneficial or detrimental to the red cells, depending on whether it serves as a micronutrient or as a catalyst of free radical reactions, with consequent decrease of their life-span.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afanas’ev I.B., Dorozhko A.I., Brodskii A.V., Kostyuk V.A., Potapovitch A.I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 38:1763–1769; 1989.

    Article  PubMed  Google Scholar 

  • Aruoma O.I., Bomford A., Polson R.J., Halliwell B. Nontransferrin-bound iron in plasma from hemochromatosis patients: effect of phlebotomy therapy. Blood 72: 1416–1419; 1988.

    PubMed  CAS  Google Scholar 

  • Ben-Hur E., Rosenthal I., Granot Graziani Y. Inhibition of phthalocyanine-sensitized photohemolysis of human erythrocytes by quercetin. Photochem. Photobiol. 57: 984–988; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Beppu M., Mizukami A., Nagoya M., Kikugawa K. Binding of anti-band 3 autoantibody to oxidatively damage erythrocytes. J. Biol. Chem. 265: 3226–3233; 1990.

    PubMed  CAS  Google Scholar 

  • Beppu M., Ando K., Kikugawa K. Poly-N-acetyllactosaminyl saccharide chains of band 3 as determinants for anti-band 3 autoantibody binding to senescent and oxidized erythrocytes. Cell. Mol. Biol. 42: 1007–1024; 1996.

    PubMed  CAS  Google Scholar 

  • Berger H.M., Mumby S., Gutteridge J.M.C. Ferrous ions detected in iron-overloaded cord blood plasma from preterm and term babies: implications for oxidative stress. Free Rad. Res. 22: 555–559; 1995.

    Article  CAS  Google Scholar 

  • Bocci V., Pessina G.P., Paulesu L. Studies of factors regulating the ageing of human erythrocytes—III. Metabolism and fate of erythrocytic vesicles. Int. J. Biochem. 11: 139–142; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Bracci R., Buonocore G. The antioxidant status of erythrocytes in preterm and term infants, Semin. Neonatol. 3:191–197; 1998.

    Article  Google Scholar 

  • Breuer W., Epsztejn S., Cabantchik Z.I. Dynamics of the cytosolic chelatable iron pool of K562 cells. FEBS Lett. 382: 304–308; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Breuer W., Ronson A., Slotki I.N., Abramov A., Hershko C., Cabantchik Z.I. The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. Blood 95: 2975–2982, 2000.

    PubMed  CAS  Google Scholar 

  • Browne P., Shalev O., Hebbel R.B. The molecular pathobiology of cell membrane iron: the sickle red cell as a model. Free Rad. Biol. Med. 24:1040–1048; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Brunori M., Falcioni G., Fioretti E., Giardina B., Rotilio G. Formation of superoxide in the autoxidation of the isolated α and β chains of human hemoglobin and its involvement in hemichrome precipitation. Eur. J. Biochem. 53: 99–104; 1975.

    Article  CAS  Google Scholar 

  • Buonocore G., Perrone S., Gioia D., Gatti M.G., Massafra C., Agosta R., Bracci R. Nucleated red blood cell count at birth as an index of perinatal brain damage. Am. J. Obstet. Gynecol. 181: 1500–1505; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Cairo G., Pietrangelo A. Iron regulatory proteins in pathobiology. Biochem. J. 352: 241–250; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ciccoli L., Ferrali M., Rossi V., Signorini C., Alessandrini C., Comporti M. Hemolytic drugs aniline and dapsone induce iron release in erythrocytes and increase the free iron pool in spleen and liver. Toxicol. Lett. 110: 57–66; 1999a.

    Article  PubMed  CAS  Google Scholar 

  • Ciccoli L., Signorini C., Scarano C., Rossi V., Bambagini S., Ferrali M., Comporti M. Iron release in erythrocytes from patients with β-thalassemia. Free Rad. Res. 30: 407–413; 1999b.

    Article  CAS  Google Scholar 

  • Ciccoli L., Rossi V., Leoncini S., Signorini C., Paffetti P., Bracci R., Buonocore G., Comporti M. Iron release in erythrocytes and plasma non protein-bound iron in hypoxic and non hypoxic newborns. Free Radic Res. 37: 51–58; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ciccoli L., Rossi V., Leoncini S., Signorini C., Blanco-Garcia J., Aldinucci C., Buonocore G., Comporti M. Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia-reoxygenation, Biochim. Biophys. Acta 1672: 203–213; 2004.

    PubMed  CAS  Google Scholar 

  • Comporti M., Signorini C., Leoncini S., Buonocore G., Rossi V., Ciccoli L. Plasma F2-isoprostanes are elevated in newborns and inversely correlated to gestational age, Free Radic. Biol. Med. 37: 724–732; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Delanty N., Reilly M., Praticò D., FitzGerald D.J., Lawson J.A., FitzGerald G.A. 8-Epi PGF2 alpha: specific analysis of an isoeicosanoid as an index of oxidant stress in vivo, Br. J. Clin. Pharmacol. 42: 15–19; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dorrepaal C.A., Berger H.M., Benders M.J.N.L., Van Zoeren-Grobben D., Van de Bor M., Van Bel F. Nonprotein-bound iron in postasphyxial reperfusion injury of the newborn. Pediatrics 98: 883–889; 1996.

    PubMed  CAS  Google Scholar 

  • Evans P.J., Evans R., Kovar I.Z., Holton A.F., Halliwell B. Bleomycin-detectable iron in the plasma of premature and full-term neonates. FEBS Lett. 303: 210–212; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ferrali M., Ciccoli L., Comporti M. Allyl alcohol-induced hemolysis and its relation to iron release and lipid peroxidation. Biochem. Pharmacol. 38: 1819–1825; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ferrali M., Ciccoli L., Signorini C., Comporti M. Iron release and erythrocytes damage in allyl alcohol intoxication in mice. Biochem. Pharmacol. 40: 1485–1490; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ferrali M., Signorini C., Ciccoli L., Comporti M. Iron release and membrane damage in erythrocytes exposed to oxidizing agents, phenylhydrazine, divicine and isouramil. Biochem. J. 285: 295–301; 1992.

    PubMed  CAS  Google Scholar 

  • Ferrali M., Signorini C., Ciccoli L., Comporti M., Iron released from an erythrocyte lysate by oxidative stress is diffusible and in redox active form. FEBS Lett. 319: 40–44; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ferrali M., Signorini C., Caciotti B., Sugherini L., Ciccoli L., Giachetti D., Comporti M. Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett. 416: 123–129; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ferrali M., Signorini C., Ciccoli L., Bambagioni S., Rossi V., Pompella A., Comporti M. Protection of erythrocytes against oxidative damage and autologous immunoglobulin G (IgG) binding by iron chelator fluor-benzoil-pyridoxal hydrazone. Biochem. Pharmacol. 59: 1365–1373; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Flynn T.P., Allen D.W., Johnson G.J., White J.G. Oxidant damage of lipids and proteins of the erythrocyte membranes in unstable hemoglobin disease: evidence for the role of lipid peroxidation. J. Clinic. Invest. 71:1215–1223; 1983.

    Article  CAS  Google Scholar 

  • Gopaul N.K., Anggard E.E., Mallet A.I., Betteridge D.J., Wolff, S.P., Nourooz-Zadeh J. Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett. 368: 225–229; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge J.M.C. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 201: 291–295; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B., Gutteridge J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1–14; 1985.

    Google Scholar 

  • Hershko H., Graham G., Bates G.W., Rachmilewitz E. Nonspecific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Brit. J. Haematol. 40: 255–263; 1978.

    Article  CAS  Google Scholar 

  • Jay D, Hitomi H., Griendling K.K. Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40: 183–192; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Kahane I. Cross-linking of red blood cell membrane proteins induced by oxidative stress in β-thalassemia. FEBS Lett. 85: 267–270; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Kay M.M.B. Localization of senescent cell antigen on band 3. Proc. Natl. Acad. Sci. USA 81: 5753–5757; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Kay M.M.B., Goodman S.R., Sorensen K., Whitfield C.F., Wong P., Zaki L., Rudloff V. Senescent cell antigen is immunologically related to band 3. Proc. Natl. Acad. Sci. USA 80: 1631–1635; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Konijn A.M., Glickstein H., Vaisman B., Meyron-Holtz E.G., Slotki I.N., Cabantchik Z.I. The cellular labile iron pool and intracellular ferritin in K562 cells. Blood 94: 2128–2134; 1999.

    PubMed  CAS  Google Scholar 

  • Ladner R.C., Heidner E.J. and Perutz M.F. The structure of horse methaemoglobin at 2.0 Å. J. Mol. Biol. 114 (1977), pp. 385–414.

    Google Scholar 

  • Lee D.H., Liu D.Y., Jacobs D.R. Jr, Shin H.R., Song K., Lee I.K., Kim B., Hider R.C. Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care 29: 1090–1095; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Li W., Xu L.H., Yuan X.M. Macrophage hemoglobin scavenger receptor and ferritin accumulation in human atherosclerotic lesions. Ann N Y Acad Sci. 1030: 196–201; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd J.B., Cable H., Rice-Evans C. Evidence that desferrioxamine cannot enter cells by passive diffusion. Biochem. Pharmacol. 41: 1361–1363; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Low P.S., Waugh S.M., Zinke K., Drenckhahn D. The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science 227: 531–533; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Lubin B.H., Van de Berg J.J.M., Lewis R.A., Scott M.D. and Kuypers F.A. Unique properties of the neonatal red cell. In: M. Xanthou, R. Bracci and G. Prindull, Editors, Neonatal haematology and immunology II, Excerpta Medica, Amsterdam, pp. 79–89; 1993.

    Google Scholar 

  • Lutz H.U., Bussolino F., Flepp R., Fasler S., Stammler P., Kazatchkine M.D., Arese P. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc. Natl. Acad. Sci. USA 84: 7368–7372; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald V.W., Charache S. Differences in the reaction sequences associated with drug-induced oxidation of hemoglobins E, S, A, and F. J. Lab. Clin. Med. 102: 762–772; 1983.

    PubMed  CAS  Google Scholar 

  • Miller D.M., Buettner G.R., Aust S.D. Transition metals as catalysts of “autoxidation” reactions. Free Rad. Biol. Med. 8: 95–108; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Minotti G. Sources and role of iron in lipid peroxidation. Chem. Res. Toxicol. 6: 134–146; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Monteiro H.P., Winterbourn C.C. Release of iron from ferritin by divicine, isouramil, acid-hydrolyzed vicine and dialuric acid and initiation of lipid peroxidation. Arch. Biochem. Biophys. 271: 536–545; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Montuschi P., Barnes P.J., Roberts L.J. II, Isoprostanes: markers and mediators of oxidative stress, FASEB J. 18:1791–1800; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Morrow J.D., Roberts L.J. II, The isoprostanes: current knowledge and directions for future research, Biochem. Pharmacol. 51:1–9; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Porter J.B., Abeysinghe R.D., Marshall L., Hider R.C., Singh S. Kinetics of removal and reappearance of non-transferrin-bound plasma iron with deferoxamine therapy. Blood 88: 705–713; 1996.

    PubMed  CAS  Google Scholar 

  • Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Biochem. J. 249: 185–190; 1988.

    PubMed  CAS  Google Scholar 

  • Reif D.W. Ferritin as a source of iron for oxidative damage. Free Rad. Biol. Med. 12: 417–427; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Repka T., Shalev O., Reddy R., Yuan J., Abrahamov A., Rachmilewitz A., Low P.S., Hebbel R. P. Nonrandom association of free iron with membranes of sickle and β-thalassemic erythrocytes. Blood 82: 3204–3210; 1993.

    PubMed  CAS  Google Scholar 

  • Ryan T.P., Aust S.D. The role of iron in oxygen-mediated toxicities. Crit. Rev. Toxicol. 22: 119–141; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Robson N., Brittain T. Heme stability in the human embryonic hemoglobins, J. Inorg. Biochem. 64: 137–147; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Rossi V., Leoncini S., Signorini C., Buonocore G., Paffetti P., Tanganelli D., Ciccoli L., Comporti M. Oxidative stress and autologous immunoglobulin G binding to band 3 dimers in newborn erythrocytes. Free Radic Biol Med. 40: 907–915; 2006a.

    Article  PubMed  CAS  Google Scholar 

  • Rossi V., Tanganelli I., Leoncini S., Signorini C., Totagiancaspro D., Ciccoli L. Oxidative stress and autologous IgG binding to band 3 dimers in erythrocytes of diabetic subjects. Diabetologia 49: 343; 2006b.

    Article  Google Scholar 

  • Sailaja Y.R., Baskar R., Saralakumari D. The antioxidant status during maturation of reticulocytes to erythrocytes in type 2 diabetics. Free Radic Biol Med 35: 133–139; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Saugstad O.D. Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease, Acta Paediatr. 85: 1–4; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Scott M.D., Van de Berg J.J.M., Repka T., Rouyer-Fessard P., Hebbel R.P., Beuzard P., Lubin B.H. Effect of excess α-hemoglobin chains on cellular and membrane oxidation in model β-thalassemic erythrocytes. J. Clinic. Invest. 91: 1706–1712; 1993.

    Article  CAS  Google Scholar 

  • Signorini C., Ferrali M., Ciccoli L., Sugherini L., Magnani A. and Comporti M. Iron release, membrane protein oxidation and erythrocyte ageing. FEBS Lett. 262: 165–170; 1995.

    Article  Google Scholar 

  • Sorata Y., Takahama U., Kimura M. Protective effect of quercetin and rutin on photosensitized lysis of human erythrocytes in the presence of hematoporphyrin. Biochem. Biophys. Acta 799: 313–317; 1984.

    PubMed  CAS  Google Scholar 

  • Thomas C.E., Aust S.D. Rat liver microsomal NADPH-dependent release of iron from ferritin and lipid peroxidation. J. Free Rad. Biol. Med. 1: 293–300; 1985.

    Article  CAS  Google Scholar 

  • Turrini F., Arese P., Yuan J., Low P.S. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J. Biol. Chem. 266: 23611–23617; 1991.

    PubMed  CAS  Google Scholar 

  • Turrini F., Mannu F., Cappadoro M., Ulliers D., Giribaldi G., Arese P. Binding of naturally occurring antibodies to oxidatively and nonoxidatively modified erythrocyte band 3. Biochim. Biophys. Acta 1190: 297–303; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Yuan X.M., Olsson A.G., Brunk U.T. Macrophage erythrophagocytosis and iron exocytosis. Redox Report 2: 9–17; 1996a.

    Google Scholar 

  • Yuan X.M., Anders W.L., Olsson A.G., Brunk U.T. Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis. Atherosclerosis 124: 61–73; 1996b.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Ciccoli, L., Leoncini, S., Signorini, C., Comporti, M. (2008). Iron and Erythrocytes: Physiological and Pathophysiological Aspects. In: Valacchi, G., Davis, P.A. (eds) Oxidants in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8399-0_8

Download citation

Publish with us

Policies and ethics