Skip to main content

Hydrogen Peroxide: The Good, The Bad, and The Ugly

  • Chapter

Hydrogen peroxide (H2O2) is a stable intermediate produced from oxygen. Primary sources of H2O2 are enzymes that can reduce oxygen with two electrons and the dismutation of superoxide (O2 .−). Superoxide, the one-electron reduction product of oxygen is actually kinetically favored as the activation energy for simultaneous two electron reduction is considerably higher. Superoxide production occurs in mitochondria as the result of a leak from the electron transport chain that is pulled forward by dismutation catalyzed by mitochondrial superoxide dismutase; however, mitochondrial production is not clearly regulated by physiological signaling and is likely to be involved in pathologies. A more clearly regulated source of O2 .− and H2O2 however, is the NADPH oxidase family (NOX and DuOX) that are found on other cellular membranes. Once thought to be restricted to phagocytes, where the assembly of an active superoxide producing oxidase complex has been well categorized, stimulated H2O2 production is now known to occur in almost all cells through NOX and/or DuOX activities.

H2O2 participates in pathology through reaction with transition metals that produce hydroxyl radical. H2O2 is used to generate hypohalous acids through catalysis by myeloperoxidases and lactoperoxidase. These oxidizing acids kill microorganisms but also damage tissue during inflammation. H2O2 also acts as a second messenger in signal transduction through its reaction with key proteins containing critical cysteine residues. These signaling reactions involve reversible oxidation catalyzed by peroxiredoxins and/or other as yet unidentified enzymes that result in intramolecular or mixed glutathione-protein disulfides.

The multiple roles of H2O2 in biology are still incompletely understood. The goal here is both to inform the reader about the biological roles of H2O2 and the unresolved questions as well as to encourage further investigation of this small but far from simple molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-mehdi, A. B., Zhao, G., Dodia, C., Tozawa, K., Costa, K., Muzykantov, V., Ross, C., Blecha, F., Dinauer, M. & Fisher, A. B. (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K +. Circ Res 83, 730–737.

    PubMed  CAS  Google Scholar 

  • Albrich, J. M., Mccarthy, C. A. & Hurst, J. K. (1981) Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proceedings National Academy of Sciences, USA 78, 210–214.

    CAS  Google Scholar 

  • Arrigo, A. P. (1999) Gene expression and the thiol redox state. Free Radic Biol Med 27, 936–944.

    PubMed  CAS  Google Scholar 

  • Bain, J., McLauchlan, H., Elliott, M. & Cohen, P. (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371, 199–204.

    PubMed  CAS  Google Scholar 

  • Barrett, W. C., Degnore, J. P., Keng, Y. F., Zhang, Z. Y., Yim, M. B. & Chock, P. B. (1999a) Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 274, 34543–34546.

    PubMed  CAS  Google Scholar 

  • Barrett, W. C., Degnore, J. P., Konig, S., Fales, H. M., Keng, Y. F., Zhang, Z. Y., Yim, M. B. & Chock, P. B. (1999b) Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38, 6699–6705.

    PubMed  CAS  Google Scholar 

  • Bayraktutan, U., Blayney, L. & Shah, A. M. (2000) Molecular characterization and localization of the NAD(P) H oxidase components gp91-phox and p22-phox in endothelial cells. Arterioscler Thromb Vasc Biol 20, 1903–1911.

    PubMed  CAS  Google Scholar 

  • Bedard, K. & Krause, K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245–313.

    PubMed  CAS  Google Scholar 

  • Bienert, G. P., Schjoerring, J. K. & Jahn, T. P. (2006) Membrane transport of hydrogen peroxide. Biochim Biophys Acta 1758, 994–1003.

    PubMed  CAS  Google Scholar 

  • Boveris, A. & Cadenas, E. (1975) Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Letters 54, 311.

    PubMed  CAS  Google Scholar 

  • Boveris, A. & Cadenas, E. (1997) Cellular sources and steady-state levels of reactive oxygen species. In Clerch, L. B. & Massaro, D. J. (Eds.) Oxygen, Gene Expression, and Cellular Function, New York, Marcel Dekker.

    Google Scholar 

  • Boveris, A., Oshino, N. & Chance, B. (1972) The cellular production of hydrogen peroxide. Biochem J 128, 617–630.

    PubMed  CAS  Google Scholar 

  • Brigelius, R., Muckel, C., Akerboom, T. P. M. & Sies, H. (1983) Identification and quantitation of glutathione and its relationship to glutathione disulfide. Biochemical Pharmacology 32, 2529–2534.

    PubMed  CAS  Google Scholar 

  • Brookes, P. & Darley-Usmar, V. M. (2002) Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32, 370–374.

    PubMed  CAS  Google Scholar 

  • Brottman, G. M., Regelmann, W. E., Slungaard, A. & Wangensteen, O. D. (1996) Effect of eosinophil peroxidase on airway epithelial permeability in the guinea pig. Pediatr Pulmonol 21, 159–166.

    PubMed  CAS  Google Scholar 

  • Buettner, G. R., Ng, C. F., Wang, M., Rodgers, V. G. & Schafer, F. Q. (2006) A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med 41, 1338–1350.

    PubMed  CAS  Google Scholar 

  • Burdon, R. H., Gill, V. & Rice-Evans, C. (1989) Cell proliferation and oxidative stress. Free Radic Res Commun 7(3–6), 149–159.

    PubMed  CAS  Google Scholar 

  • Burdon, R. H., Gill, V. & Rice-Evans, C. (1990) Oxidative stress and tumour cell proliferation. Free Radic Res Commun 11(1–3), 65–76.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., Boveris, A., Ragan, C. I. & Stoppani, A. O. (1977) Production of superoxide radicals and hydrogen peroxide by NADH- ubiquinone reductase and ubiquinol-cytochrome c reductase from beef- heart mitochondria. Arch Biochem Biophys 180, 248–257.

    PubMed  CAS  Google Scholar 

  • Chang, H. Y., Nishitoh, H., Yang, X., Ichijo, H. & Baltimore, D. (1998) Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281, 1860–1863.

    PubMed  CAS  Google Scholar 

  • Chiarugi, P., Fiaschi, T., Taddei, M. L., Talini, D., Giannoni, E., Raugei, G. & Ramponi, G. (2001) Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation. J Biol Chem 276, 33478–33487.

    PubMed  CAS  Google Scholar 

  • Colston, J. T., De La Rosa, S. D., Strader, J. R., Anderson, M. A. & Freeman, G. L. (2005) H2O2 activates Nox4 through PLA2-dependent arachidonic acid production in adult cardiac fibroblasts. FEBS Lett 579, 2533–2540.

    PubMed  CAS  Google Scholar 

  • Curnutte, J. T. & Babior, B. M. (1974) Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes. J Clin Invest 53, 1662–1672.

    PubMed  CAS  Google Scholar 

  • Czech, M. P. (1976) Differential effects of sulfhydryl reagents on activation and deactivation of the fat cell hexose transport system. J Biol Chem 251, 1164–1170.

    PubMed  CAS  Google Scholar 

  • Denu, J. M. & Tanner, K. G. (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37, 5633–5642.

    PubMed  CAS  Google Scholar 

  • Dinauer, M. C., Deck, M. B. & Unanue, E. R. (1997) Mice lacking reduced nicotinamide adenine dinucleotide phosphate oxidase activity show increased susceptibility to early infection with Listeria monocytogenes. J Immunol 158, 5581–5583.

    PubMed  CAS  Google Scholar 

  • Dorey, C. K., Khouri, G. G., Syniuta, L. A., Curran, S. A. & Weiter, J. J. (1989) Superoxide production by porcine retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci 30, 1047–1054.

    PubMed  CAS  Google Scholar 

  • Finkel, T. (2006) Intracellular redox regulation by the family of small GTPases. Antioxid Redox Signal 8, 1857–1863.

    PubMed  CAS  Google Scholar 

  • Forman, H., J, & Cadenas, E. (Eds.) (1997) Oxidative Stress and Signal Transduction, New York, Chapman & Hall.

    Google Scholar 

  • Forman, H. J. (2007) Use and abuse of exogenous H2O2 in studies of signal transduction. Free Radic Biol Med 42, 926–932.

    PubMed  CAS  Google Scholar 

  • Forman, H. J. & Fridovich, I. (1973) Superoxide dismutase: a comparison of rate constants. Archives of Biochemistry and Biophysics 158, 396–400.

    PubMed  CAS  Google Scholar 

  • Forman, H. J., Fukuto, J. & Torres, M. (2004) Redox signaling - thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287, C246–C256.

    PubMed  CAS  Google Scholar 

  • Forman, H. J. & Kennedy, J. A. (1974) Role of superoxide radical in mitochondrial dehydrogenase reactions. Biochem Biophys Res Commun 60, 1044–1050.

    PubMed  CAS  Google Scholar 

  • Forman, H. J. & Torres, M. (2001) Redox signaling in macrophages. Mol Aspects Med 22, 189–216.

    PubMed  CAS  Google Scholar 

  • Gao, L., Kim, K. J., Yankaskas, J. R. & Forman, H. J. (1999) Abnormal glutathione transport in cystic fibrosis airway epithelia. Am J Physiol 277, L113–L118.

    PubMed  CAS  Google Scholar 

  • Geiszt, M. (2006) NADPH oxidases: new kids on the block. Cardiovasc Res 71, 289–299.

    PubMed  CAS  Google Scholar 

  • Griendling, K. K., Sorescu, D. & Ushio-Fukai, M. (2000) NAD(P) H oxidase: role in cardiovascular biology and disease. Circ Res 86, 494–501.

    PubMed  CAS  Google Scholar 

  • Hausladen, A. & Fridovich, I. (1996) Measuring nitric oxide and superoxide: rate constants for aconitase reactivity. Methods Enzymol 269, 37–41.

    PubMed  CAS  Google Scholar 

  • Hilenski, L. L., Clempus, R. E., Quinn, M. T., Lambeth, J. D. & Griendling, K. K. (2004) Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24, 677–683.

    PubMed  CAS  Google Scholar 

  • Hofmann, B., Hecht, H. J. & Flohe, L. (2002) Peroxiredoxins. Biol Chem 383, 347–364.

    PubMed  CAS  Google Scholar 

  • Ichijo, H., Nishida, E., Irie, K., Ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K. & Gotoh, Y. (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90–94.

    PubMed  CAS  Google Scholar 

  • Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T. & Goldschmidt-Clermont, P. J. (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275, 1649–1652.

    PubMed  CAS  Google Scholar 

  • Jensen, P. K. (1966) Antimycin-insensitive oxidation of succinate and reduced nicotinamide- adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim Biophys Acta 122, 157–166.

    PubMed  CAS  Google Scholar 

  • Jones, D. P. (2006) Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 163, 38–53.

    PubMed  CAS  Google Scholar 

  • Jones, S. A., Wood, J. D., Coffey, M. J. & Jones, O. T. (1994) The functional expression of p47-phox and p67-phox may contribute to the generation of superoxide by an NADPH oxidase-like system in human fibroblasts. FEBS Lett 355, 178–182.

    PubMed  CAS  Google Scholar 

  • Joneson, T. & Bar-Sagi, D. (1998) A Rac1 effector site controlling mitogenesis through superoxide production. J Biol Chem 273, 17991–17994.

    PubMed  CAS  Google Scholar 

  • Kaul, N. & Forman, H. J. (1996) Activation of NF-κB by the respiratory burst of macrophages. Free Radical Biology & Medicine 21, 401–405.

    CAS  Google Scholar 

  • Ketterer, B. (1982) The role of nonenzymatic reactions of glutathione in xenobiotic metabolism. Drug Metabolism Reviews 13, 161–187.

    PubMed  CAS  Google Scholar 

  • Klug, D., Rabani, J. & Fridovich, I. (1972) A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem 247, 4839–4842.

    PubMed  CAS  Google Scholar 

  • Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H. & Beckman, J. S. (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5, 834–842.

    PubMed  CAS  Google Scholar 

  • Krejsa, C. M., Nadler, S. G., Esselstyn, J. M., Kavanagh, T. J., Ledbetter, J. A. & Schieven, G. L. (1997) Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. Redox independent activation of NF-tB. J Biol Chem 272, 11541–11549.

    PubMed  CAS  Google Scholar 

  • Lambeth, J. D. (2007) Nox enzymes, ROS, and chronic disease: An example of antagonistic pleiotropy. Free Radic Biol Med 43, 332–347.

    PubMed  CAS  Google Scholar 

  • Lambeth, J. D., Cheng, G., Arnold, R. S. & Edens, W. A. (2000) Novel homologs of gp91phox. Trends Biochem Sci 25, 459–461.

    PubMed  CAS  Google Scholar 

  • Lambeth, J. D., Kawahara, T. & Diebold, B. (2007) Regulation of Nox and DuOx enzymatic activity and expression Free Radic Biol Med 43, 319–331.

    PubMed  CAS  Google Scholar 

  • Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S. L., Lambeth, J. D. & Griendling, K. K. (2001) Novel gp91phox homologues in vascular smooth muscle cells: Nox1 mediates angiotensin II-induced superoxide formation and redox- sensitive signaling pathways. Circ Res 88, 888–894.

    PubMed  CAS  Google Scholar 

  • Lee, S. R., Kwon, K. S., Kim, S. R. & Rhee, S. G. (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273, 15366–15372.

    PubMed  CAS  Google Scholar 

  • Li, S. & Whorton, A. R. (2003) Regulation of protein tyrosine phosphatase 1B in intact cells by S-nitrosothiols. Arch Biochem Biophys 410, 269–279.

    PubMed  CAS  Google Scholar 

  • Liu, H., Zhang, H., Iles, K. E., Rinna, A., Merrill, G., Yodoi, J., Torres, M. & Forman, H. J. (2006) The ADP-stimulated NADPH oxidase activates the ASK-1/MKK4/JNK pathway in alveolar macrophages. Free Radic Res 40, 865–874.

    PubMed  CAS  Google Scholar 

  • Loschen, G., Azzi, A., Richter, C. & Flohe, L. (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Letters 42, 68.

    PubMed  CAS  Google Scholar 

  • Marklund, S. L. (1984) Properties of extracellular superoxide dismutase from human lung. Biochem J 220, 269–272.

    PubMed  CAS  Google Scholar 

  • Massey, V., Strickland, S., Mayhew, S. G., Howell, L. G., Engel, P. C., Matthews, R. G., Schulman, M. & Sullivan, P. A. (1969) The production of superoxide anion radicals in the reaction of reduced flavins and flavoproteins with molecular oxygen. Biochem Biophys Res Commun 36, 891.

    PubMed  CAS  Google Scholar 

  • McCord, J. M. & Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049–6055.

    PubMed  CAS  Google Scholar 

  • Meister, A. & Anderson, M. E. (1983) Glutathione. Annu Rev Biochem 52, 711–760.

    PubMed  CAS  Google Scholar 

  • Misra, H. P. & Fridovich, I. (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247, 3170.

    PubMed  CAS  Google Scholar 

  • Mochizuki, T., Furuta, S., Mitsushita, J., Shang, W. H., Ito, M., Yokoo, Y., Yamaura, M., Ishizone, S., Nakayama, J., Konagai, A., Hirose, K., Kiyosawa, K. & Kamata, T. (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25, 3699–3707.

    PubMed  CAS  Google Scholar 

  • Modlinger, P., Chabrashvili, T., Gill, P. S., Mendonca, M., Harrison, D. G., Griendling, K. K., Li, M., Raggio, J., Wellstein, A., Chen, Y., Welch, W. J. & Wilcox, C. S. (2006) RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension 47, 238–244.

    PubMed  CAS  Google Scholar 

  • Mohazzab-H, K. M., Kaminski, P. M. & Wolin, M. S. (1994) NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 266, H2568–H2572.

    CAS  Google Scholar 

  • Montgomery, M. (1977) Paraquat toxicity and pulmonary superoxide dismutase: an enzymic deficiency of lung microsomes. Res Commun Chem Pathol Pharmacol 16, 155.

    PubMed  CAS  Google Scholar 

  • Mukherjee, S. P., Lane, R. H. & Lynn, W. S. (1978) Endogenous hydrogen peroxide and peroxidative metabolism in adipocytes in response to insulin and sulfhydryl reagents. Biochem Pharmacol 27, 2589–2594.

    PubMed  CAS  Google Scholar 

  • Mukherjee, S. P. & Mukherjee, C. (1982) Similar activities of nerve growth factor and its homologue proinsulin in intracellular hydrogen peroxide production and metabolism in adipocytes. Transmembrane signalling relative to insulin-mimicking cellular effects. Biochem Pharmacol 31, 3163–3172.

    PubMed  CAS  Google Scholar 

  • Murphy, J. K., Hoyal, C. R., Livingston, F. R. & Forman, H. J. (1995) Modulation of the alveolar macrophage respiratory burst by hydroperoxides. Free Radical Biology & Medicine 18, 37–45.

    CAS  Google Scholar 

  • Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., Miyazono, K. & Ichijo, H. (1998) ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2, 389–395.

    PubMed  CAS  Google Scholar 

  • Ollinger, K., Buffinton, G. D., Ernster, L. & Cadenas, E. (1990) Effect of superoxide dismutase on the autoxidation of substituted hydro- and semi-naphthoquinones. Chem Biol Interact 73, 53–76.

    PubMed  CAS  Google Scholar 

  • Poderoso, J. J., Carreras, M. C., Lisdero, C., Riobo, N., Schopfer, F. & Boveris, A. (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328, 85–92.

    PubMed  CAS  Google Scholar 

  • Price, M. O., Mcphail, L. C., Lambeth, J. D., Han, C. H., Knaus, U. G. & Dinauer, M. C. (2002) Creation of a genetic system for analysis of the phagocyte respiratory burst: high-level reconstitution of the NADPH oxidase in a nonhematopoietic system. Blood 99, 2653–2661.

    PubMed  CAS  Google Scholar 

  • Rahman, I., Biswas, S. K., Jimenez, L. A., Torres, M. & Forman, H. J. (2005) Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal 7, 42–59.

    PubMed  CAS  Google Scholar 

  • Raugei, G., Ramponi, G. & Chiarugi, P. (2002) Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 59, 941–949.

    PubMed  CAS  Google Scholar 

  • Rhee, S. G. (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883.

    PubMed  Google Scholar 

  • Rinna, A., Torres, M. & Forman, H. J. (2006) Stimulation of the alveolar macrophage respiratory burst by ADP causes selective glutathionylation of protein tyrosine phosphatase 1B. Free Radic Biol Med 41, 86–91.

    PubMed  CAS  Google Scholar 

  • Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K. & Ichijo, H. (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal- regulating kinase (ASK) 1. EMBO J 17, 2596–2606.

    PubMed  CAS  Google Scholar 

  • Salmeen, A., Andersen, J. N., Myers, M. P., Meng, T. C., Hinks, J. A., Tonks, N. K. & Barford, D. (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423, 769–773.

    PubMed  CAS  Google Scholar 

  • Selvaraj, R. J. & Sbarra, A. J. (1966) Relationship of glycolytic and oxidative metabolism to particle entry and destruction in phagocytosing cells. Nature 211, 1272–1276.

    PubMed  CAS  Google Scholar 

  • Shaw, J. O., Henson, P. M., Henson, J. & Webster, R. O. (1980) Lung inflammation induced by complement-derived chemotactic fragments in the alveolus. Lab Invest 42, 547–558.

    PubMed  CAS  Google Scholar 

  • Sohn, J. & Rudolph, J. (2003) Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction. Biochemistry 42, 10060–10070.

    PubMed  CAS  Google Scholar 

  • Song, J. J. & Lee, Y. J. (2003) Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulating kinase 1. Biochem J 373, 845–853.

    PubMed  CAS  Google Scholar 

  • Stauble, B., Boscoboinik, D., Tasinato, A. & Azzi, A. (1994) Modulation of activator protein-1 (AP-1) transcription factor and protein kinase C by hydrogen peroxide and D-α-tocopherol in vascular smooth muscle cells. Eur J Biochem 226, 392–402.

    Google Scholar 

  • Stone, J. R. (2004) An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systems. Arch Biochem Biophys 422, 119–124.

    PubMed  CAS  Google Scholar 

  • Strobel, H. W. & Coon, M. J. (1971) Effect of superoxide generation and dismutation on hydroxylation reactions catalyzed by liver microsomal cytochrome P-450. J Biol Chem 246, 7826.

    PubMed  CAS  Google Scholar 

  • Suh, Y. A., Arnold, R. S., Lassegue, B., Shi, J., Xu, X., Sorescu, D., Chung, A. B., Griendling, K. K. & Lambeth, J. D. (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79–82.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y. J., Forman, H. J. & Sevanian, A. (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22, 269–285.

    PubMed  CAS  Google Scholar 

  • Takeda, K., Hatai, T., Hamazaki, T. S., Nishitoh, H., Saitoh, M. & Ichijo, H. (2000) Apoptosis signal-regulating kinase 1 (ASK1) induces neuronal differentiation and survival of PC12 cells. J Biol Chem 275, 9805–9813.

    PubMed  CAS  Google Scholar 

  • Tammariello, S. P., Quinn, M. T. & Estus, S. (2000) NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci 20, RC53.

    PubMed  CAS  Google Scholar 

  • Taube, H. (1965) Mechanisms of oxidation with oxygen. J. Gen. Physiol 2, 29.

    Google Scholar 

  • Tobiume, K., Saitoh, M. & Ichijo, H. (2002) Activation of apoptosis signal-regulating kinase 1 by the stress-induced activating phosphorylation of pre-formed oligomer. J Cell Physiol 191, 95–104.

    PubMed  CAS  Google Scholar 

  • Torres, M. & Forman, H. J. (1999) Activation of several MAP kinases upon stimulation of rat alveolar macrophages: role of the NADPH oxidase. Arch Biochem Biophys 366, 231–239.

    PubMed  CAS  Google Scholar 

  • Tu, B. P., Ho-Schleyer, S. C., Travers, K. J. & Weissman, J. S. (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290, 1571–1574.

    PubMed  CAS  Google Scholar 

  • Turrens, J. F., Freeman, B. A. & Crapo, J. D. (1982) Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Archives of Biochemistry and Biophysics 217, 411–421.

    PubMed  CAS  Google Scholar 

  • Ursini, F., Maiorino, M. & Gregolin, C. (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839, 62–70.

    PubMed  CAS  Google Scholar 

  • Van Der Vliet, A., Eiserich, J. P., Halliwell, B. & Cross, C. E. (1997) Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem 272, 7617–7625.

    PubMed  Google Scholar 

  • Van Der Vliet, A., Nguyen, M. N., Shigenaga, M. K., Eiserich, J. P., Marelich, G. P. & Cross, C. E. (2000) Myeloperoxidase and protein oxidation in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 279, L537–L546.

    Google Scholar 

  • Wang, J. & Slungaard, A. (2006) Role of eosinophil peroxidase in host defense and disease pathology. Arch Biochem Biophys 445, 256–260.

    PubMed  CAS  Google Scholar 

  • Wang, X. S., Diener, K., Jannuzzi, D., Trollinger, D., Tan, T. H., Lichenstein, H., Zukowski, M. & Yao, Z. (1996) Molecular cloning and characterization of a novel protein kinase with a catalytic domain homologous to mitogen-activated protein kinase kinase kinase. J Biol Chem 271, 31607–31611.

    PubMed  CAS  Google Scholar 

  • Weisiger, R. A. & Fridovich, I. (1973) Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248, 4793–4796.

    PubMed  CAS  Google Scholar 

  • Winterbourn, C. C. & Metodiewa, D. (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27, 322–328.

    PubMed  CAS  Google Scholar 

  • Wood, Z. A., Poole, L. B. & Karplus, P. A. (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650–653.

    PubMed  CAS  Google Scholar 

  • Ximenes, V. F., Kanegae, M. P., Rissato, S. R. & Galhiane, M. S. (2007) The oxidation of apocynin catalyzed by myeloperoxidase: proposal for NADPH oxidase inhibition. Arch Biochem Biophys 457, 134–141.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Forman, H.J. (2008). Hydrogen Peroxide: The Good, The Bad, and The Ugly. In: Valacchi, G., Davis, P.A. (eds) Oxidants in Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8399-0_1

Download citation

Publish with us

Policies and ethics