Skip to main content

The Present and Future Role of Insect-Resistant Genetically Modified Potato Cultivars in IPM

  • Chapter

Part of the book series: Progress in Biological Control ((PIBC,volume 5))

Abstract

Potato, Solanum tuberosum L., is one of the world’s principal food crops. Important potato insect pests include Colorado potato beetle, Leptinotarsa decemlineata Say, potato tuberworm, Phthorimaea operculella (Zeller), and aphids, especially as they transmit potato leafroll virus and potato virus Y. Management of insect pests of potato relies almost entirely on chemical insecticides. Potato breeding is complicated by the potato’s tetraploidy. Numerous Solanum spp. have resistance to insects but these properties have not been transferred into commercially desirable cultivars. Insect-resistant cultivars are generally not available. GM potatoes expressing resistance to L. decemlineata, potato virus Y, and potato leaf roll virus were registered and marketed in the USA from 1995–2000, but were withdrawn from the market in response to marketing concerns about GM crops. Bacillus thuringiensis (Bt) genes for resistance to various insect pests are likely candidates for inclusion into potatoes using genetic engineering. Other resistance factors, including glandular trichomes, leptine glycoalkaloids, and other genes encoding for insecticidal proteins also show promise, especially if pyramided with appropriate Bt genes. Re-introduction of GM potatoes in the USA and elsewhere awaits changes in consumer preferences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adang, M.J., Brody, M.S., Cardineau, G., Eagan, N., Roush, R.T., Shewmaker, C., Jones, A., Oakes, J., and McBride, K., 1993. The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Molecular Biology 21: 1131–1145.

    PubMed  CAS  Google Scholar 

  • An, G., Watson, B., and Chiang, C., 1986. Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiology 81: 301–305.

    PubMed  Google Scholar 

  • Anonymous, 1984. Potatoes for the Developing World. International Potato Center, Lima, Peru, pp. 13–16.

    Google Scholar 

  • Anonymous, 2005. Neonicotinoid Insecticides–A Grower Approach to Resistance Management for Colorado Potato Beetle and Green Peach Aphid in Potatoes. National Potato Council. Washington, DC, USA.

    Google Scholar 

  • http://www.irac-online.org/documents/insecticides_press.pdf (accessed 23 January 2008).

  • Arpaia, S., Gould, F., and Kennedy, G., 1997. Potential impact of Coleomegilla maculata predation on adaptation of Leptinotarsa decemlineata to Bt transgenic potatoes. Entomologia Experimentalis et Applicata 82: 91–100.

    Google Scholar 

  • Ballvora, A., Ercolano, M.R., Weiss, J., Meksem, K., Bormann, C.A., Oberhagemann, P., Salamini, F., and Gebhardt, C., 2003. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal 30: 361–371.

    Google Scholar 

  • Bates, S.L., Zhao, J.Z., Roush, R.T., and Shelton, A.M., 2005. Insect resistance management in GM crops: past, present and future. Nature Biotechnology 23: 57–62.

    PubMed  CAS  Google Scholar 

  • Biever, K.D., and Chauvin, R.L., 1992. Suppression of the Colorado potato beetle (Coleoptera: Chrysomelidae) with augmentative releases of predaceous stinkbugs (Hemiptera: Pentatomidae). Journal of Economic Entomology 85: 720–726.

    Google Scholar 

  • Bishop, B.A., and Grafius, E., 1996. Insecticide resistance in the Colorado potato beetle. In: Chrysomelidae Biology, Vol. 1, The Classification, Phylogeney and Genetics, P. Jolivet and M. Cox, eds., SPB Academic Publishing, Amsterdam, The Netherlands, pp. 355–377.

    Google Scholar 

  • Bishop, B., Grafius, E., Byrne, A., Pett, W., and Bramble, E., 2003. Potato insect biology and management. 2002 Research Report. Michigan Potato Research Report 34: 113–130. Michigan Agricultural Experiment Station, East Lansing, MI, USA.

    Google Scholar 

  • Boiteau, G., 1988. Sperm utilization and post-copulatory female guarding in the Colorado potato beetle, L. decemlineata. Entomologia Experimentalis et Applicata 47: 183–187.

    Google Scholar 

  • Boiteau, G., Misener, G., Singh, R., and Bernard, G., 1992. Evaluation of a vacuum collector for insect pest control in potato. American Potato Journal 69: 157–166.

    Google Scholar 

  • Bradeen, J.M., Carputo, D., and Douches, D.S., 2008. Potato. In: Transgenic Series, Vol. 4, Sugar, Tuber and Fiber Crops, C.R. Kole and T.C. Hall, eds., Blackwell, Oxford, UK (in press).

    Google Scholar 

  • Brown, C.R., 2005. Antioxidants in potato. American Journal of Potato Research 82: 163–172.

    CAS  Google Scholar 

  • Brunelle, F., Girard, C., Cloutier, C., and Michaud, M., 2005. A hybrid, broad-spectrum inhibitor of Colorado potato beetle aspartate and cysteine digestive proteinases. Archives of Insect Biochemistry and Physiology 60: 20–31.

    PubMed  CAS  Google Scholar 

  • Byrne, A., Grafius, E., Bishop, B., and Pett, W., 2004. Susceptibility of Colorado potato beetle populations to imidacloprid and thiamethoxam. Arthropod Management Tests 29: L12.

    Google Scholar 

  • Cameron, P.J., Wallace, A.R., Madhusudhan, V.V., Wigley, P.J., Qureshi, M.S., and Walker, G.P., 2005. Mating frequency in dispersing potato tuber moth, Phthorimaea operculella, and its influence on the design of refugia to manage resistance in Bt transgenic crops. Entomologia Experimentalis et Applicata 115: 323–332.

    Google Scholar 

  • Cappaert, D.L., Drummond, F.A., and Logan, P.A., 1991. Incidence of natural enemies of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) on a native host in Mexico. Entomophaga 36: 369–378.

    Google Scholar 

  • Capinera, J.L., 2001. Handbook of Vegetable Insects. Academic, NY, USA, 729 p.

    Google Scholar 

  • Casagrande, R.A., 1987. The Colorado potato beetle: 125 years of mismanagement. Bulletin of the Entomological Society of America 18: 142–150.

    Google Scholar 

  • Chen, M., Ye, G.Y., Liu, Z.C., Yao, H.W., Chen, X.X., Shen, S.C., Hu, C., and Datta, S.K., 2006. Field assessment of the effects of transgenic rice expressing fused gene of cry1Ab and cry1Ac from Bacillus thuringiensis Berliner on nontarget planthopper and leafhopper populations. Environmental Entomology 35: 127–134.

    Google Scholar 

  • Cloutier, C., Fournier, M., Jean, C., Yelle, S., and Michaud, D., 1999. Growth compensation and faster development of Colorado potato beetle (Coleoptera: Chrysomelidae) feeding on potato foliage expressing oryzacystatin I. Archives of Insect Biochemistry and Physiology 40: 69–79.

    CAS  Google Scholar 

  • Coombs, J.J., Douches, D.S., Li, W.B., Grafius, E.J., and Pett, W.L., 2002. Combining engineered (Bt-cry3A) and natural resistance mechanisms in potato (Solanum tuberosum L.) for control of the Colorado potato beetle. Journal of the American Society of Horticultural Science 127: 62–68.

    CAS  Google Scholar 

  • Cooper, S.G., Douches, D.S., and Grafius, E.J., 2004. Combining genetic engineering and traditional breeding to provide durable resistance in potatoes to Colorado potato beetle. Entomologia Experimentalis et Applicata 112: 37–46.

    CAS  Google Scholar 

  • Dangl, J.L., and Jones, J.D.G., 2001. Plant pathogens and integrated defense responses to infection. Nature 411: 826–833.

    PubMed  CAS  Google Scholar 

  • Daniell, H., Datta, R., Varma, S., Gray, S., and Lee, S.B., 1998. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nature Biotechnology 16: 345–348.

    PubMed  CAS  Google Scholar 

  • Davidson, M.M., Butler, R.C., Wratten, S.D., and Conner, A.J., 2004. Resistance of potatoes transgenic for a cry 1Ac9 gene, to Phthorimaea operculella (Lepidoptera: Gelichiidae) over field seasons and between plant organs. Annals of Applied Biology 145: 271–277.

    CAS  Google Scholar 

  • Davidson, M.M., Butler, R.C., Wratten, S.J., and Conner, A.J., 2005. Age-specific bioassays and fecundity of Phthorimaea operculella (Lepidoptera: Gelichiidae) reared on cry1Ac-transgenic potato plants. Annals of Applied Biology 146: 493–499.

    Google Scholar 

  • Davis, J.A., Radcliffe, E.B., and Ragsdale, D.W., 2007. Resistance to green peach aphid, Myzus persicae (Sulzer), and potato aphid, Macrosiphum euphorbiae (Thomas), in potato cultivars. American Journal of Potato Research 84: 259–269.

    Google Scholar 

  • Difonzo, C., Ragsdale, D.W., and Radcliffe, E.B., 2007. Integrated Management of Seed Potato with Emphasis on the Red River Valley of Minnesota and North Dakota. Radcliffe’s IPM World Textbook. http://www.ipmworld.umn.edu/chapters/difonzo.htm (accessed 23 January 2008).

  • Douches, D.S., Westedt, A.L., Zarka, K., Schroeter, B., and Grafius, E.J., 1998. Transformation of CryV-Bt transgene combined with natural resistance mechanisms for resistance to tuber moth in potato (Solanum tuberosum L.). HortScience 33: 1053–1056.

    CAS  Google Scholar 

  • Douches, D.S., Pett, W., Santos, F., Coombs, J., Grafius, E., Li, W., Metry, E.A., Nasr El-Din, T., and Madkour, M., 2004. Field and storage testing Bt-potatoes for resistance to potato tuber moth (Lepidoptera: Gelichiidae). Journal of Economic Entomology 97: 1425–1431.

    PubMed  CAS  Google Scholar 

  • Down, R.E., Gatehouse, A.M.R., Hamilton, W.D.O., and Gatehouse, J.A., 1996. Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. Journal of Insect Physiology 42: 1035–1045.

    CAS  Google Scholar 

  • Duan, J.J., Head, G., Jensen, A., and Reed, G., 2004. Effects of transgenic Bacillus thuringiensis potato and conventional insecticides for Colorado potato beetle (Coleoptera: Chrysomelidae) management on the abundance of ground-dwelling arthropods in Oregon potato ecosystems. Environmental Entomology 33: 275–281.

    CAS  Google Scholar 

  • Estrada, M.A., Zarka, K., Cooper, S., Coombs, J., Douches, D.S., and Grafius, E., 2007. Potato tuberworm (Lepidoptera: Gelechiidae) resistance in potato lines with the Bacillus thuringiensis cry1Ac gene and natural resistance factors. HortScience 42: 1306–1311.

    CAS  Google Scholar 

  • Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., and Koziel, M.G., 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences of the USA 93: 5389–5394.

    PubMed  CAS  Google Scholar 

  • FAOSTAT data, 2006. http://faostat.fao.org/site/408/DesktopDefault.aspx?PageID=408 (accessed 19 December 2007).

  • Ferré, J., and Van Rie, J., 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology 47: 501–533.

    PubMed  Google Scholar 

  • Fischoff, D., Bowdish, K.S., Perlak, F.J., Marrone, P.G., McCormick, S.M., Niedermeyer, J.G., Dean, D.A., Kusano-Kretzmer, K., Mayer, E.J., Rochester, D.E., Rogers, S.G., and Fraley, R.T., 1987. Insect tolerant transgenic tomato plants. Nature Biotechnology 5: 807–813.

    Google Scholar 

  • Forgash, A.J., 1985. Insecticide resistance in the Colorado potato beetle. In: Proceedings of the symposium of the Colorado potato beetle, D.N. Ferro and R.H. Voss, eds., XVIIth International Congress of Entomology, Massachusetts Agricultural Experiment Station Bulletin. No. 704. Amherst, MA, USA, pp. 33–52.

    Google Scholar 

  • Gatehouse, A.M.R., Davison, G.M., Newell, C.A., Merryweather, A., Hamilton, W.D.O., Burgess, E.P.J., Gilbert, R.J.C., and Gatehouse, J.A., 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Molecular Breeding 3: 49–63.

    CAS  Google Scholar 

  • Gatehouse, A.M.R., Davison, G.M., Steward, J.N., Gatehouse, L.N., Kumar, A., Geoghegan, I.E., Birch, A.N.E., and Gatehouse, J.A., 1999. Concanavalin A inhibits development of tomato moth (Lacanobia oleracea) and peach-potato aphid (Myzus persicae) when expressed in transgenic potato plants. Molecular Breeding 5: 153–165.

    CAS  Google Scholar 

  • Gauthier, N.L., Hofmaster, R.N., and Semel, M., 1981. History of Colorado potato beetle control. In: Advances in Potato Pest Management, J.H. Lashomb and R.A. Casgrande, eds., Hutchinson Ross, Stroudsburg, PA, USA, pp. 13–33.

    Google Scholar 

  • Grafius, E., 1997. Economic impact of insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae) on the Michigan potato industry. Journal of Economic Entomology 90: 1144–1151.

    CAS  Google Scholar 

  • Grafius, E., Pett, W., Bishop, B. Byrne, A., and Bramble, E., 2005. Potato insect biology and management. Michigan Potato Research Report 36: 42–56. Michigan Agricultural Experiment Station, East Lansing, MI, USA.

    Google Scholar 

  • Groden, E., Drummond, F.A., Casagrande, R.A., and Haynes, D.L., 1990. Coleomegilla maculata (Coleoptera: Coccinellidae): its predation upon the Colorado potato beetle (Coleoptera: Chrysomelidae) and its incidence in potatoes and surrounding crops. Journal of Economic Entomology 83: 1306–1315.

    Google Scholar 

  • Guenthner, J.F., 2002. Consumer acceptance of genetically modified potatoes. American Journal of Potato Research 79: 309–316.

    Google Scholar 

  • Harcourt, D.G., 1971. Population dynamics of Leptinotarsa decemlineata (Say) in eastern Ontario. III. Major population processes. Canadian Entomologist 103: 1049–1061.

    Google Scholar 

  • Hare, J.D., 1990. Ecology and management of the Colorado potato beetle. Annual Review of Entomology 35: 81–100.

    Google Scholar 

  • Hawkes, J.G., 1994. Origins of the cultivated potatoes and species relationships. In: Potato Genetics, J. Bradshaw and G. Mackay, eds., CAB International, Wallingford, UK, pp. 3–42.

    Google Scholar 

  • Hazzard, R.V., and Ferro, D.N., 1991. Feeding response of adult Coleomegilla maculata (Coleoptera: Coccinellidae) to eggs of Colorado potato beetle (Coleoptera: Chrysomelidae) and green peach aphids (Homoptera: Aphididae). Environmental Entomology 20: 644–651.

    Google Scholar 

  • Heim, D.C., Kennedy, G.G., and Vanduyn, J.W., 1990. Survey of insecticide resistance among North Carolina Colorado potato beetle (Coleoptera, Chrysomelidae) populations. Journal of Economic Entomology 83: 1229–1235.

    CAS  Google Scholar 

  • Hilbeck, A., Eckel, C., and Kennedy, G.G., 1997. Predation on Colorado potato beetle eggs by generalist predators in research and commercial potato plantings. Biological Control 8: 191–196.

    Google Scholar 

  • Hough-Goldstein, J., and Keil, C.B., 1991. Prospects for integrated control of the Colorado potato beetle (Coleoptera: Chrysomelidae) using Perillus bioculatus (Hemiptera: Pentatomidae) and various pesticides. Journal of Economic Entomology 84: 1645–1651.

    CAS  Google Scholar 

  • Hough-Goldstein, J.A., Heimpel, G.E., Bechmann, H.E., and Mason, C.E., 1993. Arthropod natural enemies of the Colorado potato beetle. Crop Protection 12: 324–334.

    Google Scholar 

  • Huang, F.C., Klaus, S., Herz, S., Zou, Z., Koop, H.U., and Golds, T., 2002. Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Molecular Genetics and Genomics 268: 19–27.

    PubMed  CAS  Google Scholar 

  • Ioannidis, P.M., Grafius, E., and Whalon, M.E., 1991. Patterns of insecticide resistance to azinphosmethyl carbofuran and permethrin in Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 84: 1417–1423.

    CAS  Google Scholar 

  • Ioannidis, P.M, Grafius, E., Wierenga, J.M., Whalon, M.E., and Hollingworth, R.M., 1992. Selection, inheritance and characterization of carbofuran resistance in Colorado potato beetle (Coleoptera: Chrysomelidae). Pesticide Science 35: 215–222.

    CAS  Google Scholar 

  • Jaffe, G., 2003. Planting Trouble: Are Farmers Squandering Bt Corn Technology. Center for Science in the Public Interest, Washington, DC, USA. http://www.cspinet.org/new/pdf/bt_corn_report.pdf (accessed 23 January 2008).

  • James, C., 2007. Global Status of Commercialized Biotech/GM Crops: 2007. ISAAA Brief No. 37, International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NY, USA.

    Google Scholar 

  • Kaniewski, W., and Thomas, P., 2004. The potato story. AgBioForum 7(1&2): 41–46.

    Google Scholar 

  • Kuhl, J.C., Zarka, K., Coombs, J., Kirk, W.W., and Douches, D.S., 2007. Late blight resistance of RB transgenic potato lines. Journal of the American Society of Horticultural Science 132: 783–789.

    CAS  Google Scholar 

  • Lachman, J., Hamouz, K., Orsák, M., and Pivec, V., 2001. Potato glycoalkaloids and their significance in plant protection and human nutrition–review. Series Rostlinná Vyroba 47: 181–191.

    CAS  Google Scholar 

  • Lagnaoui, A., Cañedo, V., and Douches, D.S., 2001. Evaluation of Bt-cry1Ia1 (cryV) transgenic potatoes on two species of potato tuber moth, Phthorimaea operculella and Symmetrischema tangolias (Lepidoptera: Gelechiidae) in Peru. CIP Program Report 1999–2000, International Potato Center, Lima, Peru, pp. 117–121.

    Google Scholar 

  • Lambert, B., and Peferoen, M., 1992. Insecticidal promise of Bacillus thuringiensis. BioScience 42: 112–122.

    Google Scholar 

  • Lapointe, S.L., and Tingey, W.M., 1986. Glandular trichomes of Solanum neocardenasii confer resistance to green peach aphid (Homoptera: Aphididae). Journal of Economic Entomology 79: 1264–1268.

    Google Scholar 

  • Lawson, D.R., Veilleux, R.E., and Miller, A.R., 1993. Biochemistry and genetics of Solanum chacoense steroidal alkaloids: natural resistance factors to the Colorado potato beetle. Current Topics in Botanical Research 1: 335–352.

    Google Scholar 

  • Lecardonnel, A., Chauvin, L., Jouanin, L., Beaujean, A., Prevost, G., and Sangwan-Norreel, B., 1999. Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Science 140: 71–79.

    CAS  Google Scholar 

  • Lee, M.K., Miles, P., and Chen, J.S., 2005. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochemical and Biophysical Research Communications 339: 1043–1047.

    PubMed  Google Scholar 

  • Lorenzen, J.H., Balbyshev, N.F., Lafta, A.M., Casper, H., Tian, X., and Sagredo, B., 2001. Resistant potato selections contain leptine and inhibit development of the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 94: 1260–1267.

    PubMed  CAS  Google Scholar 

  • Maliga, P., 2004. Plastid transformation in higher plants. Annual Review of Plant Biology 55: 289–313.

    PubMed  CAS  Google Scholar 

  • Mani, G.S., 1985. Evolution of resistance in the presence of two insecticides. Genetics 109: 761–783.

    PubMed  CAS  Google Scholar 

  • Meiyalaghan, S., Jacobs, J.M.E., Butler, R.C., Wratten, S.D., and Conner, A.J., 2006. Expression of cry 1Ac9 and cry9Aa2 genes under a potato light-inducible Lhca3 promoter in transgenic potatoes for tuber moth resistance. Euphytica 147: 297–309.

    CAS  Google Scholar 

  • Michaud, D., Nguyen-Quoc, B., and Yelle, S., 1993. Selective inhibition of Colorado potato beetle cathepsin H by oryzacystatins I and II. Federation of European Biochemical Societies Letters 331: 173–176.

    PubMed  CAS  Google Scholar 

  • Misener, G.C., Bioteau, G., and McMillan, L.P., 1993. A plastic-lining trenching device for the control of Colorado potato beetle: beetle excluder. American Potato Journal 70: 903–908.

    Google Scholar 

  • Moellenbeck, D.J., Peters, M.L., Bing, J.W., Rouse, J.R., Higgins, L.S. Sims, L., Nevshemal, T., Marshall, L., Ellis, R.T., Bystrak, P.G., Lang, B.A., Stewart, J.L., Kouba, K., Sondag, V., Gustafson, V., Nour, K., Xu, D., Swenson, J., Zhang, J., Czapla, T., Schwab, G., Jayne, S., Stockhoff, B.A., Narva, K., Schnepf, H.E., Stelman, S.J., Poutre, C., Koziel, M., and Duck, N., 2001. Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms. Nature Biotechnology 19: 668–672.

    PubMed  CAS  Google Scholar 

  • Mota-Sanchez, D., Hollingworth, R.M., Grafius, E.J., and Moyer, D.D., 2006. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Management Science 62: 30–37.

    PubMed  CAS  Google Scholar 

  • Moyer, D.D., Derksen, R.C., and McLeod, M.J., 1992. Development of a propane flamer for Colorado potato beetle. American Potato Journal 69: 599–600.

    Google Scholar 

  • Naimov, S., Dukiandjiev, S., and de Maagd, R.A., 2003. A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnology Journal 1: 51–57.

    PubMed  CAS  Google Scholar 

  • National Agricultural Statistics Service, 2006. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1560 (accessed April 2007).

  • Park, T.H., Gros, J., Sikkema, A., Vleeshouwers, V., Muskens, M., Allefs, S., Jacobsen, E., Visser, R.G.F., and van der Vossen, E.A.G., 2005. The late blight resistance locus Rpi-blb3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Molecular Plant Microbe Interactions 18: 722–729.

    PubMed  CAS  Google Scholar 

  • Paul, A.A., and Southgate, D.A.T., 1978. McCance and Widdowson’s the composition of foods, 4th ed. MRC Special Report No. 297. Her Majesty’s Stationery Office, London, UK.

    Google Scholar 

  • Perlak, F.J., Stone, T.B., Muskopf, Y.M., Petersen, L.J., Parker, G.B, McPherson, S.A., Wyman, J., Love, S., Reed, G., Biever, D., and Fischhoff, D.A., 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Molecular Biology 22: 313–321.

    PubMed  CAS  Google Scholar 

  • Plaisted, R.L., Tingey, W.M., and Steffens, J.C., 1992. The germplasm release of NYL235–4: a clone with resistance to the Colorado potato beetle. American Potato Journal 69: 843–846.

    Google Scholar 

  • Radcliffe, E.B., and Ragsdale, D.W., 2002. Aphid-transmitted potato viruses: the importance of understanding vector biology. American Journal of Potato Research 79: 353–386.

    Google Scholar 

  • Reed, G.L., Jensen, A.S., Riebe, J., Head, G., and Duan, J.J., 2001. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: comparative efficacy and non-target impacts. Entomologia Experimentalis et Applicata 100: 89–100.

    CAS  Google Scholar 

  • Ripperger, H., and Schreiber, K., 1981. Solanum steroid alkaloids. In: The Alkaloids, Chemistry and Physiology, R. Manske and R. Rodrigo, eds., Academic, New York, USA, pp. 81–192.

    Google Scholar 

  • Roddick, J.G., 1986. Steroidal alkaloids of the Solanaceae. In: Solanaceae, Biology and Systematics, W.G. D’Arcy, ed., Columbia University Press, New York, USA, pp. 201–222.

    Google Scholar 

  • Romeis, J., Meissle, M., and Bigler, F., 2006. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnology 24: 63–71.

    PubMed  CAS  Google Scholar 

  • Rommens, C.M., Humara, J.M., Ye, J., Yan, H., Richael, C., Zhang, L., Perry, R., and Swords, K., 2004. Crop improvement through modification of the plant’s own genome. Plant Physiology 135: 421–431.

    PubMed  CAS  Google Scholar 

  • Rommens, C.M., Ye, J., Richael, C., and Swords, K., 2006. Improving potato storage and processing characteristics through all-native DNA transformation. Journal of Agriculture and Food Chemistry 54: 9882–9887.

    CAS  Google Scholar 

  • Roush, R.T., 1998. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philosophical Transactions of the Royal Society London Series B-Biological Science 353: 1777–1786.

    CAS  Google Scholar 

  • Sanford, L.L., Kobayshi, R.S., Deahl, K.L., and Sinden, S.L., 1996. Segregation of leptines and other glycoalkaloids in Solanum tuberosum (4X) X S. chacoense (4X) crosses. American Potato Journal 73: 21–31.

    CAS  Google Scholar 

  • Sexson, D.L., Wyman, J., Radcliffe, E.B., Hoy, C.J., Ragsdale, D.W., and Dively, G.P., 2005. Potato. In: Vegetable Insect Management, R. Foster and B. Flood, eds., Meister Publishing, Willoughby, OH, USA, pp. 92–107.

    Google Scholar 

  • Sharma, H.C., Crouch, J.H., Sharma, K.K., Seetharama, N., and Hash, C.T., 2002. Applications of biotechnology for crop improvement: prospects and constraints. Plant Science 163: 381–395.

    CAS  Google Scholar 

  • Shelton, A.M., Zhao, J.Z., and Roush, R.T., 2002. Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Annual Review of Entomology 47: 845–881.

    PubMed  CAS  Google Scholar 

  • Simon, W., 2003. The agricultural advantages and consumer acceptance or otherwise of genetically modified crops with particular emphasis on potatoes. Nuffield Reports: Biotechnology Reports. Nuffield Farming Scholarships Trust of Market Harborough, UK, 28 p.

    Google Scholar 

  • Sinden, S.E., and Webb, R.E., 1972. Effect of variety and location on the glycoalkaloid content of potatoes. American Potato Journal 49: 334–338.

    CAS  Google Scholar 

  • Sinden, S.L., Sanford, L.L., and Osman, S.F., 1980. Glycoalkaloid and resistance to the Colorado potato beetle in Solanum chacoense Bitter. American Potato Journal 57: 331–343.

    CAS  Google Scholar 

  • Sinden, S.L., Sanford, L.L., Cantelo, W.W., and Deahl, K.L., 1986. Leptine glycoalkaloids and resistance to the Colorado potato beetle (Coleoptera: Chrysomelidae) in Solanum chacoense. Environmental Entomology 15: 1057–1062.

    CAS  Google Scholar 

  • Singh, P., Kumar, M., Chaturvedi, C., Yadav, D., and Tuli, R., 2004. Development of a hybrid delta-endotoxin and its expression in tobacco and cotton for control of a polyphagous pest Spodoptera litura. Transgenic Research 13: 397–410.

    PubMed  CAS  Google Scholar 

  • Smilde, W.D., Brigneti, G., Jagger, L., Perkins, S., and Jones, J.D.G., 2005. Solanum mochiquense chromosome IX carries a novel late blight resistance gene Rpi-moc1. Theoretical and Applied Genetics 110: 252–258.

    PubMed  CAS  Google Scholar 

  • Song, J., Bradeen, J.M., Naess, S.K., Raasch, J.A., Wielgus, S.M., Haberlach, G., Liu, J., Kuang, H., Austin-Phillips, S., Buell, C.R., Helgeson, J.P., and Jiang, J., 2003. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the USA 100: 9128–9133.

    PubMed  CAS  Google Scholar 

  • Spooner, D.M., and Hijmans, R.J., 2001. Potato systematics and germplasm collecting, 1989–2000. American Journal of Potato Research 78: 237–268.

    Google Scholar 

  • Spooner, D.M., van den Berg, R.G., Rodriguez, A., Bamberg, J.B., Hijmans, R.J., and Lara-Caberera, S.I., 2004. Wild potatoes (Solanum section Petota; Solanaceae) of the North and Central America. American Society of Plant Taxonomists, Ann Arbor, MI, USA.

    Google Scholar 

  • Sporleder, M., Kroschel, J., Huber, J., and Lagnaoui, A., 2005. An improved method to determine the biological activity (LC50) of the granulosis PoGV in its host Phthorimaea operculella. Entomologia Experimentalis et Applicata 116: 191–197.

    Google Scholar 

  • Stapleton, A., Allen, P.V., Friedman, M., and Belknap, W.R., 1991. Purification and characterization of solanidine glycosyltransferase from potato (Solanum tuberosum). Journal of Agriculture and Food Chemistry 39: 1187–1193.

    CAS  Google Scholar 

  • Tarn, T.R., Tai, G.C.C., De Jong, H., Murphy, A.M., and Seabrook, J.E.A., 1992. Breeding potatoes for long-day, temperate climates. Plant Breeding Reviews 9: 217–332.

    Google Scholar 

  • Thomas, P.E., Kaniewski, W.K., and Lawson, E.C., 1997. Reduced field spread of potato leafroll virus in potatoes transformed with the potato leafroll virus coat protein gene. Plant Disease 81: 1447–1453.

    Google Scholar 

  • Thornton, M., 2003. The Rise and Fall of NewLeaf Potatoes. NABC Report 15: Biotechnology: Science and Society at a Crossroad, pp. 235–243. http://nabc.cals.cornell.edu/pubs/nabc_15/chapters/Thornton.pdf (accessed 23 January 2008).

  • Tingey, W.M., 1991. Potato glandular trichomes: defensive activity against insect attack. In: Naturally Occurring Pest Bioregulators, P.A. Hedin, ed., American Chemical Society Symposium Series 449, American Chemical Society, Books, Washington, DC, USA, pp. 126–135.

    Google Scholar 

  • Tingey, W.M, Gregory, P., Plaisted, R.L., and Tauber, M.J., 1984. Research progress: Potato glandular trichomes and steroid glycoalkaloids. Report of the XXII planning conference on Integrated Pest Management, International Potato Center, Lima, Peru, pp. 115–124.

    Google Scholar 

  • USEPA (United States Environmental Protection Agency), 2001. Biopesticide Registration Action Document. Bacillus thuringiensis (Bt) Plant-Incorporated Protectants. 15 October 2001. http://www.epa.gov/oppbppd1/biopesticides/pips/bt_brad.htm (accessed 15 January 2008).

  • Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M.V., and Leemans, J., 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.

    CAS  Google Scholar 

  • van der Vossen, E., Sikkema, A., Hekkert, B.T.L., Gros, J., Stevens, P., Muskens, M., Wouters, D., Pereira, A., Stiekema, W., and Allefs, S., 2003. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. The Plant Journal 37: 867–882.

    Google Scholar 

  • Van Gelder, W.M.J., 1990. Chemistry, toxicology and occurrence of steroidal glycoalkaloids: potential contaminants of the potato (Solanum tuberosum L.). In: Poisonous Plant Contamination of Edible Plants, A.F.M. Rizk, ed., CRC, Boca Raton, FL, USA, pp. 117–156.

    Google Scholar 

  • Visser, D., 2005. Guide to Potato Pests and Their Natural Enemies in South Africa. Arc-Roodeplaat Vegetable and Ornamental Plant Institute, Pretoria, South Africa, 105 p.

    Google Scholar 

  • Weisz, R., Smilowitz, Z., and Christ, B., 1994. Distance, rotation, and border crops affect Colorado potato beetle (Coleoptera: Chrysomelidae) colonization and population density and early blight (Alternaria solani) severity in rotated potato fields. Journal of Economic Entomology 87: 723–729.

    Google Scholar 

  • Westedt, A.L., Douches, D.S., Pett, W., and Grafius, E.J., 1998. Evaluation of natural and engineered resistance mechanisms in Solanum tuberosum L. for resistance to Phthorimaea operculella Zeller. Journal of Economic Entomology 91: 552–556.

    Google Scholar 

  • Whalon, M.E., and Wingerd, B.A., 2003. Bt: mode of action and use. Archives of Insect Biochemistry and Physiology 54: 200–211.

    PubMed  CAS  Google Scholar 

  • Whalon, M.E., Mota-Sanchez, D., Hollingworth, R.M., and Duynslager, L., 2007. Arthropod Pesticide Resistance Database. http://www.pesticideresistance.org (accessed December 2007).

  • Woolfe, J.A., 1987. The Potato in the Human Diet. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Wright, R.J., 1984. Evaluation of crop rotation for control of Colorado potato beetles (Coleoptera: Chrysomelidae) in commercial potato fields on Long Island. Journal of Economic Entomology 77: 1254–1259.

    CAS  Google Scholar 

  • Yencho, G.G., and Tingey, W.M., 1994. Glandular trichomes of Solanum berthaultii alter host preference of the Colorado potato beetle, Leptinotarsa decemlineata. Entomologia Experimentalis et Applicata 70: 217–225.

    Google Scholar 

  • Yu, C.G., Mullins, M.A., Warren, G.W., Koziel, M.G., and Estruch, J.J., 1997. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Applied and Environmental Microbiology 63: 532–536.

    PubMed  CAS  Google Scholar 

  • Zhao, J.Z., Grafius, E.J., and Bishop, B.A., 2000. Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology 93: 1508–1514.

    PubMed  CAS  Google Scholar 

  • Zhao, J.Z., Cao, J., Collins, H.L., Bates, S.L., Roush, R.T., Earle, E.D., and Shelton, A.M., 2005. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proceedings of the National Academy of Sciences of the USA 102: 8426–8430.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Grafius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Grafius, E.J., Douches, D.S. (2008). The Present and Future Role of Insect-Resistant Genetically Modified Potato Cultivars in IPM. In: Romeis, J., Shelton, A.M., Kennedy, G.G. (eds) Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. Progress in Biological Control, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8373-0_7

Download citation

Publish with us

Policies and ethics