Skip to main content

Microbial Colonization of Various Habitable Niches During Alteration of Oceanic Crust

  • Chapter
Book cover Links Between Geological Processes, Microbial Activities&Evolution of Life

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 4))

Abstract

Tunnel structures in volcanic glass are a world wide phenomenon and known to harbor microorganisms of the deep sub-seafloor biosphere. As alteration and weathering of the ocean crusts proceeds, volcanic glass is altered and devitrified. Palagonitization of volcanic glass results in the secondary phases palagonite, phillipsite and smectite. The alteration and palagonitization result in destruction of microbial habitats. Colonization of new habitable niches is thus forced upon the microorganisms by external forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Hanbali HS, Holm NG (2002) Evidence for fossilized subsurface microbial communities at the TAG hydrothermal mound. Geomicrobiol J 19:429–438

    Article  Google Scholar 

  • Al-Hanbali HS, Sowerby SJ, Holm NG (2001) Biogenicity of silicified microbes from a hydrothermal system: relevance to the search for evidence of life on earth and other planets. Earth Planet Sci Lett 191:213–218

    Article  Google Scholar 

  • Alt JC, Mata P (2000) On the role of microbes in the alteration of submarine basaltic glass: a TEM study. Earth Planet Sci Lett 181:301–313

    Article  Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit M (2005) Preservation of ∼3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 241:707–722

    Article  Google Scholar 

  • Berger G, Schott J, Loubet M (1987) Fundamental processes controlling the first stage of alteration of a basalt glass by seawater: an experimental study between 200 and 320ˆC. Earth Planet Sci Lett 84:431–445

    Article  Google Scholar 

  • Boyd TD, Scott SD (2001) Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Geochem Trans 7

    Google Scholar 

  • Crovisier JL, Honnorez J, Eberhart JP (1987) Dissolution of basaltic glass in seawater: Mechanism and rate. Geochim Cosmochim Acta 51:2977–2990

    Article  Google Scholar 

  • Daux V, Crovisier JL, Hemond C, Petit JC (1994) Geochemical evolution of basaltic rocks subjected to weathering: fate of the major elements, rare earth elements, and thorium. Geochim Cosmochim Acta 58:4941–4954

    Article  Google Scholar 

  • De los Ríos A, Sancho LG, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190

    Article  Google Scholar 

  • Deming JW, Baross JA (1993) Deep-sea smokers: windows to a subsurface biosphere? Geochim Cosmochim Acta 57:3219–3230

    Article  Google Scholar 

  • D‘Hondt SL, Jørgensen BB, Miller DJ (2003) Proc ODP, Init Repts 201

    Google Scholar 

  • Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl Environ Microbiol 69:2906–2913

    Article  Google Scholar 

  • Edwards KJ, Bach W, McCollom T, Rogers DR (2004) Neutrophilic iron-oxidizing bacteria in the ocean: Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J 21:393–404

    Article  Google Scholar 

  • Edwards KJ, Bach W, McCollom T (2005) Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. TRENDS in Microbiol 13:449–456

    Article  Google Scholar 

  • Eggleton RA, Keller J (1982) The palagonitization of limburgite glass – a TEM study. N Jb Min 7:321–336

    Google Scholar 

  • Ehrlich HL (1996) Geomicrobiology, third edition, revised and expanded. Marcel Dekker, New York, pp 719

    Google Scholar 

  • Emerson D, Moyer CL (2002) Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol. 68:3085–3093

    Article  Google Scholar 

  • Fisk MR, Giovannoni SJ, Thorseth IH (1998) Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978–980

    Article  Google Scholar 

  • Fisk MR, Storrie-Lombardi MC, Douglas S, Popa R, McDonald G, Di Meo-Savoie C (2003) Evidence of biological activity in Hawaiian subsurface basalts. Geochem Geophys Geosyst 4:1103, doi:10.1029/2002GC000387

    Article  Google Scholar 

  • Fisk MR, Popa R, Mason OU, Storrie-Lombardi MC, Vicenzi EP (2006) Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6:48–68

    Article  Google Scholar 

  • Furnes H (1984) Chemical changes during progressive subaerial palagonitization of a subglacial ilivine tholeiite hyaloclastite: A microprobe study. Chem Geol 43:271–285

    Article  Google Scholar 

  • Furnes H, El-Anbaawy MIH (1980) Chemical changes and authigenic mineral formation during palagonitization of a basanite hyaloclastite, Gran Canaria, Canary Islands. Neues Jahrb Mineral Abh 139:279–302

    Google Scholar 

  • Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett 166:97–103

    Article  Google Scholar 

  • Furnes H, Thorseth IH, Tumyr O, Torsvik T, Fisk R (1996) Microbial activity in the alteration of glass from pillow lavas from hole 896A. Proc ODP, Scientific Results 148:191–206

    Google Scholar 

  • Furnes H, Muehlenbachs K, Tumyr O, Torsvik T, Xenophontos C (2001) Biogenic alteration of volcanic glass from the Troodos ophiolite, Cyprus. J Geol Soc, London, 158:75–84

    Article  Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 304:578–581

    Article  Google Scholar 

  • Giovannoni SJ, Fisk MR, Mullins TD, Furnes H (1996) Genetic evidence for endolithic microbial life colonizing basaltic glass-seawater interfaces. Proc ODP, Scientific Results148:207–214

    Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci 89:6045–6049

    Article  Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Hay RL, Iijima A (1968) Nature and origin of palagonite tuffs of the Honolulu Group on Oahu, Hawaii. Geol Soc Am Mem 116:338–376

    Google Scholar 

  • Honnorez J (1978) Generation of phillipsites by palagonitization of basaltic glass in sea water and the origin of K-rich deep-sea sediments. Natural Zeolites, Occurrence, Properties, Use. Pergamon Press, London

    Google Scholar 

  • Honnorez J (1981) The aging of the oceanic lithosphere. In: Emiliani C (ed) The oceanic lithosphere. John Wiley, New York, pp 525–587

    Google Scholar 

  • Ivarsson M (2006) Advantages of doubly polished thin sections for the study of microfossils in volcanic rock. Geochem. Trans. 7:5.

    Article  Google Scholar 

  • Jercinovic MJ, Keil K, Smith MR, Schmitt RA (1990) Alteration of basaltic glasses from north-central British Columbia, Canada. Geochim. Cosmochim. Acta 54:2679–2696.

    Article  Google Scholar 

  • Kennedy CB, Scott SD, Ferris FG (2003) Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, northeast Pacific Ocean. FEMS Microbiol. Ecol. 43:247–254.

    Google Scholar 

  • Little CTS, Glynn SE, Mills RA (2004) Four-hundred-and-ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. Geomicrobiol. J. 21:415–429.

    Article  Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26.

    Article  Google Scholar 

  • Peacock MA (1926) The petrology of Iceland, Part 1, The basic tuffs. R. Soc. EdinbTrans. 55:53–76.

    Google Scholar 

  • Rasmussen B (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679.

    Article  Google Scholar 

  • Rogers JR, Bennett PC (2004) Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem. Geol. 203:91–108

    Article  Google Scholar 

  • Sheta AS, Falatah AM, Al-Sewailem MS, Khaled EM, Sallam ASH (2003) Sorption characteristics of zinc and iron by natural zeolite and bentonite. Microporous Mesoporous Mater 61:127–136

    Article  Google Scholar 

  • Sposito G, Skipper NT, Sutton R, Park SH, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96:3358–3364

    Article  Google Scholar 

  • Staudigel H, Hart ST (1983) Alteration of basaltic glass: Mechanism and significance for the oceanic crust-seawater budget. Geochim Cosmochim Acta 47:337–350

    Article  Google Scholar 

  • Staudigel H, Chastain RA, Yayanos A, Bourcier W (1995) Biologically mediated dissolution of glass. Chem Geol 126:147–154

    Article  Google Scholar 

  • Staudigel H, Tebo B, Yayanos A, Furnes H, Kelley K, Plank T, Muehlenbachs K (2004) The oceanic crust as a bioreactor. The Subseafloor Biosphere at Mid-Ocean Ridges. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) Geophysical monograph 144:325–241

    Google Scholar 

  • Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and volcanoes: a tale from the oceans, ophiolites, and greenstone belts. GSA Today 16:4–10

    Article  Google Scholar 

  • Steele A, Toporski JKW, Avci R, Guidry S, McKay DS (2001) Time of flight secondary ion mass spectrometry (ToFSIMS) of a number of hopanoids. Org Geochem 32:905–911

    Article  Google Scholar 

  • Storrie-Lombardi MC, Fisk MR (2004) Elemental abundance distributions in sub-oceanic basalt glass: evidence of biogenic alteration. Geochem Geophys Geosyst 5:10

    Article  Google Scholar 

  • Tarduno JA, Duncan RA, Scholl DW (2002) Proc ODP, Init Repts 197:1–92

    Google Scholar 

  • Stroncik NA, Schmincke H-U (2001) Evolution of palagonite: Crystallization, chemical changes, and element budget. Geochem Geophys Geosyst 2:7

    Article  Google Scholar 

  • Tarduno JA, Duncan RA, Scholl DW (2002) Leg 197 summary. Proc ODP, Init Repts 197:1–92

    Google Scholar 

  • Thiel V, Toporski J, Schumann G, Sjövall P, Lausmaa J (2007) Analysis of archaeal core ether lipids using Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS): exploring a new prospect for the study of biomarkers in geobiology. Geobiology 5:75–83

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta 55:731–749

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Heldal M (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 56:845–850

    Article  Google Scholar 

  • Thorseth IH, Torsvik T, Furnes H, Muehlenbachs K (1995a) Microbes play an important role in the alteration of oceanic crust. Chem Geol 126:137–146

    Article  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1995b) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Article  Google Scholar 

  • Thorseth IH, Torsvik T, Torsvik V, Daae FL, Pedersen RB, Keldysh-98 Scientific Party (2001) Diversity of life in ocean floor basalt. Earth Planet Sci Lett 194:31–37

    Google Scholar 

  • Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0-30-Ma seafloor and sub-seafloor basaltic glass from the Australian Antarctic Discordance. Earth Planet Sci Lett 215:237–247

    Article  Google Scholar 

  • Tobin KJ, Onstott TC, DeFlaun MF, Colwell FS, Fredrickson J (1999). In situ imaging of microorganisms in geologic material. J Microbiol Met 37:201–213

    Article  Google Scholar 

  • Toporski J, and Steele A (2004) Characterization of purified biomarker compounds using time of flight-secondary ion mass spectrometry (ToF-SIMS). Org. Geochem 35:793–811

    Article  Google Scholar 

  • Torsvik T, Furnes H, Muehlenbachs K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth Planet Sci Lett 162:165–176

    Article  Google Scholar 

  • Walton AW, Schiffman P (2003) Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core 1. Description and paragenesis. Geochem Geophys Geosyst 4:5

    Article  Google Scholar 

  • Walton AW, Schiffman P, Macpherson, GL (2005) Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core: 2. Mass balance of the conversion of sideromelane to palagonite and chabazite. Geochem Geophys Geosyst 6:9

    Article  Google Scholar 

  • Westall F, Steele A, Toporski J, Walsh M, Allen C, Guidry S, McKay D, Gibson E, Chafetz H (2000) Polymeric substances and biofilms as biomarkers in terrestrial material: implications for extraterrestrial samples. J Geophys Res 105:24511–24527

    Article  Google Scholar 

  • Zhou ZH, Fyfe WS, Tazaki K, Vandergaast SJ (1992) The structural characteristics of palagonite from DSDP Site-335. Can Mineral 30:75–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ivarsson, M., Holm, N.G. (2008). Microbial Colonization of Various Habitable Niches During Alteration of Oceanic Crust. In: Dilek, Y., Furnes, H., Muehlenbachs, K. (eds) Links Between Geological Processes, Microbial Activities&Evolution of Life. Modern Approaches in Solid Earth Sciences, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8306-8_2

Download citation

Publish with us

Policies and ethics