Skip to main content

Aromatic Volatiles and Their Involvement in Plant Defense

  • Chapter
Book cover Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd El-Mawla AMA, Schmidt W, Beerhues L (2001) Cinnamic acid is a precursor of benzoic acids in cell cultures of Hypericum androsaemum L. but not in cell cultures of Centaurium erythraea RAFN. Planta 212:288–293

    PubMed  CAS  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, De Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsmaa MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J (2004) Herbivore-induced defense response in a model legume: two-spotted spider mites, Tetranychus urticae, induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthase in Lotus japonicus. Plant Physiol 135:1976–1983

    PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kuhnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98

    PubMed  CAS  Google Scholar 

  • Arimura G, Ozawa R, Shomoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defense genes in lima bean leaves. Nature 406:512–515

    PubMed  CAS  Google Scholar 

  • Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Substrate usage by recombinant alcohol acyltransferases from various fruit species. Plant Physiol 135:1865–1878

    PubMed  CAS  Google Scholar 

  • Bernasconi M, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142

    CAS  Google Scholar 

  • Beuerle T, Pichersky E (2002) Purification and characterization of benzoate: coenzyme A ligase from Clarkia breweri. Arch Biochem Biophys 400:258–264

    PubMed  CAS  Google Scholar 

  • Bin Jantan I, Yalvema MF, Ahmed NW, Jamal JA (2005) Insecticidal activities of the leaf oils of eight Cinnamomum species against Aedes aegypti and Aedes albopictus. Pharm Biolog 43:526–532

    CAS  Google Scholar 

  • Birkett MA et al (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    PubMed  CAS  Google Scholar 

  • Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135:1993–2011

    PubMed  CAS  Google Scholar 

  • Cardoza YJ, Alborn HT, Tumlinson JH (2002) In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J Chem Ecol 28:161–174

    PubMed  CAS  Google Scholar 

  • Chen Y, Xiangbo Z, Wei W, Chen Z, Gu H, Qu LJ (2006) Overexpression of the wounding-responsive gene AtMYB15 activates the shikimate pathway in Arabidopsis. J Int Plant Biol 48:1084–1095

    CAS  Google Scholar 

  • D’Alessandro M, Held M, Triponez Y, Turlings TCJ (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J Chem Ecol 32:2733–2748

    PubMed  CAS  Google Scholar 

  • D’Alessandro M, Turlings TCJ (2005) In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses 30:739–753

    PubMed  CAS  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    PubMed  CAS  Google Scholar 

  • D’Auria JC, Chen F, Pichersky E (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol 130:466–476

    PubMed  CAS  Google Scholar 

  • D’Auria JC, Chen F, Pichersky E (2003) The SABATH family of methyltransferases in Arabidopsis thaliana and other plant species. Rec Adv Phytochem 37:253–283

    CAS  Google Scholar 

  • De Boer JG, Dicke MA (2004a) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255–271

    Google Scholar 

  • De Boer JG, Dicke MA (2004b) Experience with methyl salicylate affects behavioural responses of a predatory mite to blends of herbivore-induced plant volatiles. Entomol Exp Appl 110:181–189

    Google Scholar 

  • De Boer JG, Posthumus MA, Dicke MA (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    PubMed  Google Scholar 

  • De Bruyne M, Dicke MA, Tjallingii WF (1991) Receptor cell responses in the anterior tarsi of Phytoseiulus persimilis to volatile kairomone components. Exp Appl Acarol 13:53–58

    Google Scholar 

  • Degen T, Dillmann C, Marion-Poll F, Turlings TCJ (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135:1928–1938

    PubMed  CAS  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 210:577–580

    Google Scholar 

  • Dexter R, Qualley A, Kish CM, Ma CJ, Koeduka T, Nagegowda DA, Dudareva N, Pichersky E, Clark D (2007) Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J 49:265–275

    PubMed  CAS  Google Scholar 

  • Dicke MA (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142

    CAS  Google Scholar 

  • Dicke MA, Abelis MW, Takabayashi J, Bruin J, Posthumus MA (1990) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3117

    CAS  Google Scholar 

  • Dicke MA, Gols R, Ludeking D, Posthumus MA (1999) Jasmonic acid and herbivory differentially induce carnivore attracting plant volatiles in lima bean plants. J Chem Ecol 25:1907–1922

    CAS  Google Scholar 

  • Dicke MA, Van Beek TA, Posthumus MA, Van Bokhoven H, De Groot AE (1990) Isolation and identification of volatile kairomone that affects acarine predatorprey interactions Involvement of host plant in its production. J Chem Ecol 16:381–396

    CAS  Google Scholar 

  • Dicke MA, Van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97:237–249

    CAS  Google Scholar 

  • Dicke MA, Van Poecke RMP (2002) Signaling in plant-insect interactions: signal transduction in direct and indirect plant defence. In: Scheel D, Wasternack C (eds) Plant signal transduction: frontiers in molecular biology. Oxford University Press, Oxford, pp 289–316

    Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang LJ (2002) The phenylpropanoid pathway and plant defence – a genomics perspective. Mol Plant Pathol 3:371–390

    CAS  Google Scholar 

  • Drukker B, Bruin J, Jacobs G, Kroon A, Sabelis MW (2000) How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Exp Appl Acarol 24:881–895

    PubMed  CAS  Google Scholar 

  • Dudareva N, D’Auria JC, Nam KH, Raguso RA, Pichersky E (1998) Acetyl-CoA: benzylalcohol acetyltransferase – an enzyme involved in floral scent production in Clarkia breweri. Plant J 14:297–304

    PubMed  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    PubMed  CAS  Google Scholar 

  • Effmert U, Saschenbrecker S, Ross J, Negre F, Fraser CM, Noel JP, Dudareva N, Piechulla B (2005) Floral benzenoid carboxyl methyltransferases: from in vitro to in planta function. Phytochemistry 66:1211–1230

    PubMed  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    PubMed  CAS  Google Scholar 

  • Farag MA, Fokar M, Abd, H, Zhang H, Allen RD, Pare PW (2005) (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta 220:900–909

    PubMed  CAS  Google Scholar 

  • French CJ, Vance CP, Towers GHN (1976) Conversion of p-coumaric acid to p-hydroxybenzoic acid by cell free extracts of potato tubers and Polyporus hispidus. Phytochem 15:564–566

    CAS  Google Scholar 

  • Frey M, Spiteller D, Boland W, Gierl A (2004) Transcriptional activation of Igl, the gene for indole formation in Zea mays: a structure-activity study with elicitor-active N-acyl glutamines from insects. Phytochem 65:1047–1055

    CAS  Google Scholar 

  • Frey M, Stettner C, Paré PW, Schmelz EA, Tumlinson JH, Gierl A (2000) An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci USA 97:14801–14806

    PubMed  CAS  Google Scholar 

  • Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E (2002) Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant OMT family. Plant Cell 14:505–519

    PubMed  CAS  Google Scholar 

  • Gols R, Posthumus MA, Dicke MA (1999) Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomol Exp Appl 93:77–86

    CAS  Google Scholar 

  • Gouinguene S, Pickett JA, Wadhams LJ, Birkett MA, Turlings TCJ (2005) Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays Mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J Chem Ecol 31:1023–1038

    PubMed  CAS  Google Scholar 

  • Hardie J, Isaacs R, Pickett JA, Wadhams LJ, Woodcock CM (1994) Methyl salicylate and (-)-(1R, 5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae) J Chem Ecol 20:2847–2855

    CAS  Google Scholar 

  • Hoballah-Fritsche ME, Tamó C, Turlings TCJ (2002) Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality important? J Chem Ecol 28:951–968

    Google Scholar 

  • Hopke J, Donath J, Blechert S, Boland W (1994) Herbivore-induced volatiles: the emission of acyclic homoterpenes from Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. FEBS Lett 352:146–150

    PubMed  CAS  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30:1613–1627

    PubMed  CAS  Google Scholar 

  • Jarvis AP, Schaaf O, Oldham NJ (2000) 3-Hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acid and salicylic acid but benzaldehyde is not. Planta 212:119–126

    PubMed  CAS  Google Scholar 

  • Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield M, Cooper AJL, Schloss JV, Pichersky E, Vainstein A, Dudareva N (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281:23357–23366

    PubMed  CAS  Google Scholar 

  • Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483–495

    PubMed  CAS  Google Scholar 

  • Kappers IF, Aharoni A, Van Herpen TWJM, Luckerhoff LLP, Dicke MA, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    PubMed  CAS  Google Scholar 

  • Kapteyn J, Qualley AV, Xie Z, Fridman E, Dudareva N, Gang DR (2007) Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. Plant Cell 19:3212–3229

    PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2142–2143

    Google Scholar 

  • Kessler A, Baldwin IT (2004) Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Nicotiana attenuata. Plant J 38:639–649

    PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    PubMed  Google Scholar 

  • Knudsen JT, Gershenzon J (2006) The chemical diversity of floral scent. In: Dudareva N, Pichersky E (eds) Biology of floral scent. Taylor & Francis, Boca Raton, pp 27–52

    Google Scholar 

  • Koeduka T, Fridman E, Gang DR, Vassão DG, Jackson BL, Kish CM, Orlova I, Spaaova SM, Lewis NG, Noel JP, Baiga TJ, Dudareva N, Pichersky E (2006) Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc Natl Acad Sci USA 103:10128–10133

    PubMed  CAS  Google Scholar 

  • Koeduka T, Orlova I, Kish CM, Ibdah M, Wilkerson CG, Baiga TJ, Noel JP, Dudareva N, Pichersky E (2007) The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages and continue to evolve their product specificity. Plant J (in press)

    Google Scholar 

  • Leitner M, Boland W, Mithöfer A (2005) Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytol 167:597–606

    PubMed  CAS  Google Scholar 

  • Leon J, Shulaev V, Yalpani N, Lawton MA, Raskin I (1995) Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proc Natl Acad Sci USA 92:10413–10417

    PubMed  CAS  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Tumlinson JH (1995a) Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J Chem Ecol 21:1217–1227

    CAS  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Turlings TCJ (1994) Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc Natl Acad Sci USA 91:11836–11840

    PubMed  CAS  Google Scholar 

  • Loughrin JH, Potter DA, Hamilton-Kemp TR (1995b) Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popilla japonica Newman). J Chem Ecol 21:1457–1467

    CAS  Google Scholar 

  • Mercke P, Kappers IF, Verstappen FWA, Vorst O, Dicke MA, Bouwmeester HJ (2004) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol 135:2012–2024

    PubMed  CAS  Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    PubMed  Google Scholar 

  • Ngoh SP, Choo LEW, Pang FY, Huang Y, Kini MR, Ho SH (1998) Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach. Periplaneta americana (L.). Pestic Sci 54:261–268

    CAS  Google Scholar 

  • Ninkovic V, Ahmed E, Glinwood R, Pettersson J (2003) Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agric Forest Entomol 5:27–33

    Google Scholar 

  • Obeng-Ofori D, Reichmuth CH (1997) Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. Int J Pest Manag 43:89–94

    CAS  Google Scholar 

  • Orlova I, Marshall-Colón A, Schnepp J, Wood B, Varbanova M, Fridman E, Blakeslee JJ, Peer WA, Murphy AS, Rhodes DR, Pichersky E, Dudareva N (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18:3458–3475

    PubMed  CAS  Google Scholar 

  • Ozawa R, Shimoda T, Kawaguchi M, Arimura G, Horiuchi J, Nishioka T, Takabayashi J (2000) Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J Plant Res 113:427–433

    Google Scholar 

  • Ozawa R, Shiojiri K, Sabelis MW, Arimura G, Nishioka T, Takabayashi J (2004) Corn plants treated with jasmonic acid attract more specialist parasitoids, thereby increasing parasitation of the common armyworm. J Chem Ecol 30:1797–1808

    PubMed  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167

    PubMed  Google Scholar 

  • Paré PW, Tumlinson JH (1998) Cotton volatiles synthesized and released distal to the site of insect damage. Phytochem 47:521–526

    Google Scholar 

  • Pettersson J, Pickett JA, Pye BJ, Quiroz A, Smart LE, Wadhams LJ, Woodcock CM (1994) Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera, Aphididae), and other aphids in cereal fields. J Chem Ecol 20:2565–2574

    CAS  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among 3 trophic levels – influence of plants on interactions between insect herbivores and natural enemies. Ann Rev Ecol System 11:41–65

    Google Scholar 

  • Radwanski ER, Last RL (1995) Tryptophan biosynthesis and metabolism – iochemical and molecular genetics. Plant Cell 7:921–934

    PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Cañas LA (2003) Volatile emissions triggered by multiple herbivore damage: beet armyworm and whitefly feeding on cotton plants. J Chem Ecol 29:2539–2550

    PubMed  CAS  Google Scholar 

  • Röse USR, Manukian A, Heath RR, Tumlinson JH (1996) Volatile semiochemicals released from undamaged cotton leaves. Plant Physiol 111:487–495

    PubMed  Google Scholar 

  • Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222

    PubMed  CAS  Google Scholar 

  • Schmelz EA, Alborn HT, Banchio E, Tumlinson JH (2003) Quantitative relationships between induced jasmonic acid levels and volatile emissions in Zea mays during Spodoptera exigua herbivory. Planta 216:665–673

    PubMed  CAS  Google Scholar 

  • Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    PubMed  CAS  Google Scholar 

  • Schnitzler JP, Madlung J, Rose A, Seitz HU (1992) Biosynthesis of p-hydroxybenzoic acid in elicitor-treated carrot cell cultures. Planta 188:594–600

    CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    CAS  Google Scholar 

  • Takabayashi J, Dicke MA (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1991) Variation in composition in predator attracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. Chemoecology 2:1–6

    CAS  Google Scholar 

  • Takabayashi J, Dicke MA, Takahashi S, Posthumus MA, Van Beek TA (1994) Leaf age affects composition of herbivore-induced synomones and attraction of predatory mites. J Chem Ecol 20:373–386

    CAS  Google Scholar 

  • Takabayashi J, Takahashi S, Dicke MA, Posthumus MA (1995) Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J Chem Ecol 21:273–287

    CAS  Google Scholar 

  • Tieman DM, Loucas HM, Kim JY, Clark DG, Klee HJ (2007) Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68:2660–2669

    PubMed  CAS  Google Scholar 

  • Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ (2006) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc Natl Acad Sci USA 103:8287–8292

    PubMed  CAS  Google Scholar 

  • Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    PubMed  CAS  Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Lewis WJ (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA 92:4169–4174

    PubMed  CAS  Google Scholar 

  • Turlings TCJ, McCall PJ, Alborn HT, Tumlinson JH (1993) An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol 19:411–425

    CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399–8402

    PubMed  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Heath RR, Proveaux AT, Doolittle RE (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia-marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17:2235–2251

    CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitoid wasps. Science 250:1251–1253

    PubMed  CAS  Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA 98:8139–8144

    PubMed  CAS  Google Scholar 

  • Van Den Boom CEM, Van Beek TA, Posthumus MA, De Groot AE, Dicke MA (2004) Qualitative and quantitative variation among volatile profiles induced by Tetranychus urticae feeding on plants from various families. J Chem Ecol 30:69–89

    PubMed  Google Scholar 

  • Van Poecke RMP, Dicke MA (2002) Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J Exp Bot 53:1793–1799

    PubMed  Google Scholar 

  • Van Poecke RMP, Posthumus MA, Dicke MA (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol 27:1911–1928

    PubMed  Google Scholar 

  • Vassao DG, Gang DR, Koeduka T, Jackson B, Pichersky E, Davin LB, Lewis NG (2006) Chavicol formation in sweet basil (Ocimum basilicum): cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org Biomol Chem 4:2733–2744

    PubMed  CAS  Google Scholar 

  • Verdonk JC, De Vos CHR, Verhoeven HA, Haring MA, van Tunen AJ, Schuurink RC (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochem 62:997–1008

    CAS  Google Scholar 

  • Vet LEM, Dicke MA (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Ann Rev Entomol 37:141–172

    Google Scholar 

  • Wang J, De Luca V (2005) The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ‘foxy’ methylanthranilate. Plant J 44:606–619

    PubMed  CAS  Google Scholar 

  • Wang J, Dudareva N, Bhakta S, Raguso RA, Pichersky E (1997) Floral scent production in Clarkia breweri (Onagraceae). II. Localization and developmental modulation of the enzyme SAM:(Iso)Eugenol O-methyltransferase and phenylpropanoid emission. Plant Physiol 114:213–221

    PubMed  CAS  Google Scholar 

  • Watanabe S, Hayashi K, Yagi K, Asai T, Mactavish H, Picone J, Turnball C, Watanabe N (2002) Biogenesis of 2-phenylethanol in rose flowers: incorporation of [2H8]L-phenylalanine into 2- phenylethanol and its beta-D-glucopyranoside during the flower opening of Rosa ‘Hoh-Jun’ and Rosa damascena. Mill Biosci Biotechnol Biochem 66:943–947

    CAS  Google Scholar 

  • Weissbecker B, Van Loon JJA, Dicke MA (1999) Electroantennogram responses of a predator, Perillus bioculatus, and its prey, Leptinotarsa decemlineata, to plant volatiles. J Chem Ecol 25:2313–2325

    CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    PubMed  CAS  Google Scholar 

  • Yazaki K, Heide L, Tabata M (1991) Formation of p-hydroxybenzoic acid from p-coumaric acid by cell free extract of Lithospermum erythrorhizon cell cultures. Phytochem 30:2233–2236

    CAS  Google Scholar 

  • Zhu J, Park K (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella setempunctata. J Chem Ecol 31:1733–1746

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Qualley, A.V., Dudareva, N. (2008). Aromatic Volatiles and Their Involvement in Plant Defense. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_20

Download citation

Publish with us

Policies and ethics