Skip to main content

Herbivore-Induced Indirect Defense: From Induction Mechanisms to Community Ecology

  • Chapter
Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler LS, Karban R, Strauss SY (2001) Direct and indirect effects of alkaloids on plant fitness via herbivory and pollination. Ecology 82:2032–2044

    Google Scholar 

  • Adler LS, Wink M, Distl M, Lentz AJ (2006) Leaf herbivory and nutrients increase nectar alkaloids. Ecol Lett 9:960–967

    PubMed  Google Scholar 

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Google Scholar 

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    PubMed  CAS  Google Scholar 

  • Agrawal AA (2004) Resistance and susceptibility of milkweed: competition, root herbivory, and plant genetic variation. Ecology 85:2118–2133

    Google Scholar 

  • Alborn T, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    CAS  Google Scholar 

  • Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol 135:2025–2037

    PubMed  CAS  Google Scholar 

  • Avdiushko SA, Brown GC, Dahlman DL, Hildebrand DF (1997) Methyl jasmonate exposure induces insect resistance in cabbage and tobacco. Environ Entomol 26:642–654

    CAS  Google Scholar 

  • Baldwin IT (1990) Herbivory simulations in ecological research. Trends Ecol Evol 5:91–93

    Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118

    PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant–insect interactions. Curr Opin Plant Biol 4:351–358

    PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant–plant interactions: ‘Talking trees’ in the genomics era. Science 311:812–815

    PubMed  CAS  Google Scholar 

  • Bezemer TM, De Deyn GB, Bossinga TM, van Dam NM, Harvey JA, Van der Putten WH (2005) Soil community composition drives aboveground plant–herbivore–parasitoid interactions. Ecol Lett 8:652–661

    Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    PubMed  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci USA 97:9329–9334

    PubMed  CAS  Google Scholar 

  • Blaakmeer A, Geervliet JBF, Van Loon JJA, Posthumus MA, Van Beek TA, De Groot A (1994) Comparative headspace analysis of cabbage plants damaged by two species of Pieris caterpillars: consequences for in-flight host location by Cotesia parasitoids. Entomol Exp Appl 73:175–182

    Google Scholar 

  • Boland W, Koch T, Krumm T, Piel J, Jux A (1999) Induced biosynthesis of insect semiochemicals in plants. In: Chadwick DJ, Goode J (eds) Insect–plant interactions and induced plant defence (Novartis Foundation Symposium 223). Wiley, Chichester, pp 110–126

    Google Scholar 

  • Bouwmeester HJ, Matusova R, Sun ZK, Beale MH (2003) Secondary metabolite signaling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    PubMed  CAS  Google Scholar 

  • Brodeur J (2000) Host specificity and trophic relationships of hyperparasitoids. In: Hochberg ME, Ives AR (eds) Parasitoid population biology. Princeton University Press, Princeton,pp 163–183

    Google Scholar 

  • Broekgaarden C, Poelman EH, Steenhuis G, Voorrips RE, Dicke M, Vosman B (2007) Genotypic variation in genome-wide transcription profiles induced by insect feeding. BMC Genomics 8:239

    PubMed  Google Scholar 

  • Bruinsma M, Van Dam NM, Van Loon JJA, Dicke M (2007) Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores. J Chem Ecol 33:655–668

    PubMed  CAS  Google Scholar 

  • Buitenhuis R, Vet LEM, Boivin G, Brodeur J (2005) Foraging behavior at the fourth trophic level: a comparative study of host location in aphid hyperparasitoids. Entomol Exp Appl114:107–117

    Google Scholar 

  • Cardoza YJ, Tumlinson JH (2006) Compatible and incompatible Xanthomonas infections differentially affect herbivore-induced volatile emission by pepper plants. J Chem Ecol 32:1755–1768

    PubMed  CAS  Google Scholar 

  • Chamberlain K, Guerrieri E, Pennacchio F, Pettersson J, Pickett JA, Poppy GM, Powell W, Wadhams LJ, Woodcock CM (2001) Can aphid-induced plant signals be transmitted aerially and through the rhizosphere? Biochem Syst Ecol 29:1063–1074

    Google Scholar 

  • Choh Y, Takabayashi J (2006) Herbivore-induced extrafloral nectar production in Lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. J Chem Ecol 32:2073–2077

    PubMed  CAS  Google Scholar 

  • Choh Y, Kugimiya S, Takabayashi J (2006) Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites. Oecologia 147:455–460

    PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Micr Int 19:1062–1071

    CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210–216

    PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    PubMed  CAS  Google Scholar 

  • D’Alessandro M, Turlings TCJ (2005) In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses 30:739–753

    PubMed  CAS  Google Scholar 

  • D’Alessandro M, Turlings TCJ (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32

    PubMed  CAS  Google Scholar 

  • De Boer JG, Dicke M (2004) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255–271

    PubMed  Google Scholar 

  • De Boer JG, Snoeren TAL, Dicke M (2005) Predatory mites learn to discriminate between plant volatiles induced by prey and nonprey herbivores. Anim Behav 69:869–879

    Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    PubMed  Google Scholar 

  • De Vos M (2006) Signal signature, transcriptomics, and effectiveness of induced pathogen and insect resistance in Arabidopsis. Utrecht University, Utrecht

    Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

    PubMed  Google Scholar 

  • Dicke M (1999) Evolution of induced indirect defense of plants. In: Tollrian R, Harvell CJ (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 62–88

    Google Scholar 

  • Dicke M, Bruin J (2001) Chemical information transfer between plants: back to the future. Biochem Syst Ecol 29:981–994

    CAS  Google Scholar 

  • Dicke M, Bruinsma M, Bukovinszky T, Gols R, De Jong PW, Van Loon JJA, Snoeren TAL, Zheng S-J (2006) Investigating the ecology of inducible indirect defence by manipulating plant phenotype and genotype. IOBC WPRS Bull 29:15–23

    Google Scholar 

  • Dicke M, De Boer JG, Höfte M, Rocha-Granados MC (2003) Mixed blends of herbivore-induced plant volatiles and foraging success of carnivorous arthropods. OIKOS 101:38–48

    Google Scholar 

  • Dicke M, Dijkman H (2001) Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighboring plants. Biochem Syst Ecol29:1075–1087

    CAS  Google Scholar 

  • Dicke M, Gols R, Ludeking D, Posthumus MA (1999) Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J Chem Ecol 25:1907–1922

    CAS  Google Scholar 

  • Dicke M, Hilker M (2003) Induced plant defenses: from molecular biology to evolutionary ecology. Basic Appl Ecol 4:3–14

    CAS  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990a) Plant strategies of manipulating predator–prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

    CAS  Google Scholar 

  • Dicke M, Takabayashi J, Posthumus MA, Schütte C, Krips OE (1998) Plant–phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Exp Appl Acarol 22:311–333

    CAS  Google Scholar 

  • Dicke M, Van Beek TA, Posthumus MA, Ben Dom N, Van Bokhoven H, De Groot AE (1990b) Isolation and identification of volatile kairomone that affects acarine predator–prey interactions. Involvement of host plant in its production. J Chem Ecol 16:381–396

    CAS  Google Scholar 

  • Dicke M, Van Poecke RMP (2002) Signaling in plant–insect interactions: signal transduction in direct and indirect plant defence. In: Scheel D, Wasternack C (eds) Plant signal transduction. Oxford University Press, Oxford, pp 289–316

    Google Scholar 

  • Dicke M, Vet LEM (1999) Plant–carnivore interactions: evolutionary and ecological consequences for plant, herbivore and carnivore. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell Science, Oxford, pp 483–520

    Google Scholar 

  • Donath J, Boland W (1994) Biosynthesis of acyclic homoterpenes in higher plants parallels steroid hormone metabolism. J Plant Physiol 143:473–478

    CAS  Google Scholar 

  • Du YJ, Poppy GM, Powell W (1996) Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. J Chem Ecol22:1591–1605

    CAS  Google Scholar 

  • Du YJ, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    PubMed  CAS  Google Scholar 

  • Euler M, Baldwin IT (1996) The chemistry of defense and apparency in the corollas of Nicotiana attenuata. Oecologia 107:102–112

    Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication – airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    PubMed  CAS  Google Scholar 

  • Fatouros NE, Van Loon JJA, Hordijk KA, Smid HM, Dicke M (2005) Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids. J Chem Ecol 31:2033–2047

    PubMed  CAS  Google Scholar 

  • Fritzsche-Hoballah ME, Turlings TCJ (2001) Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol Ecol Res 3:553–565

    Google Scholar 

  • Gange AC, Stagg PG, Ward LK (2002) Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol Lett 5:11–15

    Google Scholar 

  • Geervliet JBF, Posthumus MA, Vet LEM, Dicke M (1997) Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J Chem Ecol 23:2935–2954

    CAS  Google Scholar 

  • Geervliet JBF, Vet LEM, Dicke M (1994) Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula. Entomol Exp Appl 73:289–297

    CAS  Google Scholar 

  • Gols R, Posthumus MA, Dicke M (1999) Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomol Exp Appl93:77–86

    CAS  Google Scholar 

  • Gols R, Roosjen M, Dijkman H, Dicke M (2003) Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities or a combination of jasmonic acid treatment and spider mite infestation. J Chem Ecol 29:2651–2666

    PubMed  CAS  Google Scholar 

  • Gouinguene S, Degen T, Turlings TCJ (2001) Variability in herbivore-induced odor emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16

    CAS  Google Scholar 

  • Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31:387–406

    PubMed  CAS  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behavior? Ecol Entomol 29:753–756

    Google Scholar 

  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid–amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717

    CAS  Google Scholar 

  • Hambäck PA (2001) Direct and indirect effects of herbivory: feeding by spittlebugs affects pollinator visitation rates and seedset of Rudbeckia hirta. Ecoscience 8:45–50

    Google Scholar 

  • Harvey JA, Van Dam NM, Gols R (2003) Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. J Anim Ecol 72:520–531

    Google Scholar 

  • Hatanaka A, Kajiwara T, Sekiya J (1987) Biosynthetic pathway for C-6-aldehydes formation from linolenic acid in green leaves. Chem Phys Lipids 44:341–361

    CAS  Google Scholar 

  • Heil M (2004) Induction of two indirect defenses benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536

    Google Scholar 

  • Heil M, Greiner S, Meimberg H, Krüger R, Noyer JL, Heubl G, Linsenmair KE, Boland W (2004) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–208

    PubMed  CAS  Google Scholar 

  • Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083–1088

    PubMed  CAS  Google Scholar 

  • Heil M, Kost C (2006) Priming of indirect defenses. Ecol Lett 9:813–817

    PubMed  Google Scholar 

  • Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397

    PubMed  CAS  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and structure of prey communities. Theor Popul Biol 12:197–229

    PubMed  CAS  Google Scholar 

  • Hopke J, Donath J, Blechert S, Boland W (1994) Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. FEBS Lett 352:146–150

    PubMed  CAS  Google Scholar 

  • Janssen A (1999) Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol Exp Appl 90:191–198

    Google Scholar 

  • Kahl J, Siemens DH, Aerts RJ, Gabler R, Kuhnemann F, Preston CA, Baldwin IT (2000) Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210:336–342

    PubMed  CAS  Google Scholar 

  • Kappers IF, Aharoni A, Van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    PubMed  Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Roy Soc B-Biol Sci 274:303–313

    Google Scholar 

  • Koch T, Krumm T, Jung V, Engelberth J, Boland W (1999) Differential induction of plant volatile biosynthesis in the Lima bean by early and late intermediates of the octadecanoid-signaling pathway. Plant Physiol 121:153–162

    PubMed  CAS  Google Scholar 

  • Koptur S (2005) Nectar as fuel for plant protectors. In: Wäckers FL, Van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Kost C, Heil M (2005) Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic Appl Ecol 6:237–248

    Google Scholar 

  • Kowalchuk GA, Bruinsma M, Van Veen JA (2003) Assessing responses of soil microorganisms to GM plants. Trends Ecol Evol 18:403–410

    Google Scholar 

  • Landolt PJ (1993) Effects of host plant leaf damage on cabbage looper moth attraction and oviposition. Entomol Exp Appl 67:79–85

    Google Scholar 

  • Lehtilä K, Strauss SY (1997) Leaf damage by herbivores affects attractiveness to pollinators in wild radish, Raphanus raphanistrum. Oecologia 111:396–403

    Google Scholar 

  • Leitner M, Boland W, Mithöfer A (2005) Direct and indirect defenses induced by piercing–sucking and chewing herbivores in Medicago truncatula. New Phytol 167:597–606

    PubMed  CAS  Google Scholar 

  • Liechti R, Farmer EE (2002) The jasmonate pathway. Science 296:1649–1650

    PubMed  CAS  Google Scholar 

  • Lou YG, Du MH, Turlings TCJ, Cheng JA, Shan WF (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. J Chem Ecol 31:1985–2002

    PubMed  CAS  Google Scholar 

  • Masters GJ, Jones TH, Rogers M (2001) Host-plant mediated effects of root herbivory on insect seed predators and their parasitoids. Oecologia 127:246–250

    Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1995) Beta-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci USA92:2036–2040

    PubMed  CAS  Google Scholar 

  • Meiners T, Hacker NK, Anderson P, Hilker M (2005) Response of the elm leaf beetle to host plants induced by oviposition and feeding: the infestation rate matters. Entomol Exp Appl 115:171–177

    Google Scholar 

  • Mercke P, Kappers IF, Verstappen FWA, Vorst O, Dicke M, Bouwmeester HJ (2004) Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plants. Plant Physiol 135:2012–2024

    PubMed  CAS  Google Scholar 

  • Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on Lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168

    Google Scholar 

  • Mumm R, Hilker M (2006) Direct and indirect chemical defence of pine against folivorous insects. Trends Plant Sci 11:351–358

    PubMed  CAS  Google Scholar 

  • Narváez-Vásquez J, Florin-Christensen J, Ryan CA (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260

    PubMed  Google Scholar 

  • Neveu N, Grandgirard J, Nenon JP, Cortesero AM (2002) Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L. J Chem Ecol 28:1717–1732

    PubMed  CAS  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    PubMed  CAS  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185

    PubMed  CAS  Google Scholar 

  • Ohnmeiss TE, Baldwin IT (2000) Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology 81:1765–1783

    Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host–parasite interaction webs. Nature 409:78–81

    PubMed  CAS  Google Scholar 

  • Ozawa R, Arimura G, Takabayashi J, Shimoda T, Nishioka T (2000) Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol 41:391–398

    PubMed  CAS  Google Scholar 

  • Ozawa R, Shiojiri K, Sabelis MW, Arimura GI, Nishioka T, Takabayashi J (2004) Corn plants treated with jasmonic acid attract more specialist parasitoids, thereby increasing parasitization of the common armyworm. J Chem Ecol 30:1797–1808

    PubMed  CAS  Google Scholar 

  • Paré PW, Tumlinson JH (1997) Induced synthesis of plant volatiles. Nature 385:30–31

    Google Scholar 

  • Peña-Cortes H, Albrecht T, Prat S, Weiler EW, Willmitzer L (1993) Aspirin prevents wound-induced gene-expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128

    Google Scholar 

  • Piel J, Atzorn R, Gabler R, Kuhnemann F, Boland W (1997) Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signaling cascade. FEBS Lett 416:143–148

    PubMed  CAS  Google Scholar 

  • Potts SG, Vulliamy B, Dafni A, Ne’eman G, Willmer P (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84:2628–2642

    Google Scholar 

  • Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2003) Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia135:601–605

    PubMed  Google Scholar 

  • Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2005) Effects of decomposers and herbivores on plant performance and aboveground plant–insect interactions. OIKOS 108: 503–510

    Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    PubMed  CAS  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Chalmers JA, Raj S, Thaler JS (2005) Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143:566–577

    PubMed  Google Scholar 

  • Rothschild M, Schoonhoven LM (1977) Assessment of egg load by Pieris brassicae (Lepidoptera: Pieridae). Nature 266:352–355

    Google Scholar 

  • Runyon JB, Mescher MC, De Moraes CM (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967

    PubMed  CAS  Google Scholar 

  • Ruther J, Fürstenau B (2005) Emission of herbivore-induced volatiles in absence of a herbivore – response of Zea mays to green leaf volatiles and terpenoids. Z Naturforsch [C] 60:743–756

    CAS  Google Scholar 

  • Sano H, Ohashi Y (1995) Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc Natl Acad Sci USA 92:4138–4144

    PubMed  CAS  Google Scholar 

  • Scascighini N, Mattiacci L, D’Alessandro M, Hern A, Rott AS, Dorn S (2005) New insights in analysing parasitoid attracting synomones: early volatile emission and use of stir bar sorptive extraction. Chemoecology 15:97–104

    Google Scholar 

  • Schmelz EA, Alborn HT, Tumlinson JH (2001) The influence of intact–plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta 214:171–179

    PubMed  CAS  Google Scholar 

  • Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    PubMed  CAS  Google Scholar 

  • Schoonhoven LM, Van Loon JJA, Dicke M (2005) Insect–plant biology, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676

    PubMed  CAS  Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemically mediated tritrophic interaction webs on cabbage plants. Popul Ecol 43:23–29

    Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2002) Oviposition preferences of herbivores are affected by tritrophic interaction webs. Ecol Lett 5:186–192

    Google Scholar 

  • Siri N (1993) Analysis of host finding behavior of two aphid hyperparasitoids (Hymenoptera: Alloxystidae, Megaspilidae). Christian-Albrechts University, Kiel

    Google Scholar 

  • Smallegange RC, Van Loon JJA, Blatt SE, Harvey JA, Agerbirk N, Dicke M (2007) Flower vs. leaf feeding by Pieris brassicae: glucosinolate-rich flower tissues are preferred and sustain higher growth rate. J Chem Ecol 33:1831–1844

    PubMed  CAS  Google Scholar 

  • Snoeren TAL, De Jong PW, Dicke M (2007) Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. J Ecol 95:17–26

    CAS  Google Scholar 

  • Soler R, Bezemer TM, Van der Putten WH, Vet LEM, Harvey JA (2005) Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74:1121–1130

    Google Scholar 

  • Soler R, Harvey JA, Kamp AFD, Vet LEM, Van der Putten WH, Van Dam NM, Stuefer JF, Gols R, Hordijk CA, Bezemer TM (2007) Root herbivores influence the behavior of an aboveground parasitoid through changes in plant-volatile signals. OIKOS 116:367–376

    CAS  Google Scholar 

  • Steinberg S, Dicke M, Vet LEM (1993) Relative importance of infochemicals from 1st and 2nd trophic level in long-range host location by the larval parasitoid Cotesia glomerata. J Chem Ecol 19:47–59

    Google Scholar 

  • Steinberg S, Dicke M, Vet LEM, Wanningen R (1992) Response of the braconid parasitoid Cotesia (= Apanteles) glomerata to volatile infochemicals – effects of bioassay set-up, parasitoid age and experience and barometric flux. Entomol Exp Appl 63:163–175

    CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837–12842

    PubMed  CAS  Google Scholar 

  • Stout MJ, Duffey SS (1996) Characterization of induced resistance in tomato plants. Entomol Exp Appl 79:273–283

    Google Scholar 

  • Strauss SY, Irwin RE, Lambrix VM (2004) Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish. J Ecol 92:132–141

    Google Scholar 

  • Takabayashi J, Sabelis MW, Janssen A, Shiojiri K, van Wijk M (2006) Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecol Res 21:3–8

    Google Scholar 

  • Takabayashi J, Takahashi S, Dicke M, Posthumus MA (1995) Developmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synomone by corn plants. J Chem Ecol 21:273–287

    CAS  Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399:686–688

    CAS  Google Scholar 

  • Thaler JS, Farag MA, Paré PW, Dicke M (2002) Jasmonate-deficient plants have reduced direct and indirect defenses against herbivores. Ecol Lett 5:764–774

    Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (1996) Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22:1767–1781

    CAS  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (2001) Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol Entomol 26:312–324

    Google Scholar 

  • Turlings TCJ, Fritzsche ME (1999) Attraction of parasitic wasps by caterpillar-damaged plants. In: Chadwick DJ, Goode JA (eds) Insect–plant interactions and induced plant defence. John Wiley & Sons, Chichester, pp 21–38

    Google Scholar 

  • Turlings TCJ, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odors to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421–427

    PubMed  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Heath RR, Proveaux AT, Doolittle RE (1991) Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17:2235–2251

    CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    PubMed  CAS  Google Scholar 

  • Van Dam NM, Hadwich K, Baldwin IT (2000) Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122:371–379

    Google Scholar 

  • Van den Boom CEM (2003) Plant defence in a tritrophic context. Chemical and behavioral analyses of the interactions between spider mites, predatory mites and various plant species. Wageningen University, Wageningen

    Google Scholar 

  • Van Loon JJA, De Boer JG, Dicke M (2000) Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97:219–227

    Google Scholar 

  • Van Poecke RMP, Dicke M (2002) Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J Exp Bot 53:1793–1799

    PubMed  Google Scholar 

  • Van Poecke RMP, Dicke M (2004) Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol 6:387–401

    PubMed  Google Scholar 

  • Van Rijn PCJ, Tanigoshi LK (1999) The contribution of extrafloral nectar to survival and reproduction of the predatory mite Iphiseius degenerans on Ricinus communis. Exp Appl Acarol 23:281–296

    Google Scholar 

  • Van Tol RWHM, Van der Sommen ATC, Boff MIC, Van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294

    Google Scholar 

  • Van Veen FJF, Morris RJ, Godfray HCJ (2006) Apparent competition, quantitative food webs, and the structure of phytophagous insect communities. Annu Rev Entomol 51:187–208

    PubMed  Google Scholar 

  • Van Zandt PA, Agrawal AA (2004) Community-wide impacts of herbivore-induced plant responses in milkweed (Asclepias syriaca). Ecology 85:2616–2629

    Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Micr Int 17:895–908

    CAS  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Google Scholar 

  • Visser JH, Avé DA (1978) General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarsa decemlineata. Entomol Exp Appl 24:538–549

    Google Scholar 

  • Voelckel C, Baldwin IT (2004) Generalist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles. Ecol Lett 7:770–775

    Google Scholar 

  • Voelckel C, Weisser WW, Baldwin IT (2004) An analysis of plant–aphid interactions by different microarray hybridization strategies. Mol Ecol 13:3187–3195

    PubMed  CAS  Google Scholar 

  • Völkl W, Sullivan DJ (2000) Foraging behavior, host plant and host location in the aphid hyperparasitoid Euneura augarus. Entomol Exp Appl 97:47–56

    Google Scholar 

  • Vos M, Berrocal SM, Karamaouna F, Hemerik L, Vet LEM (2001) Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecol Lett 4:38–45

    Google Scholar 

  • Vrieling K, Smit W, Van der Meijden E (1991) Tritrophic interactions between aphids (Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia 86:177–182

    Google Scholar 

  • Wäckers FL, Bezemer TM (2003) Root herbivory induces an above-ground indirect defence. Ecol Lett 6:9–12

    Google Scholar 

  • Wäckers FL, Van Rijn PCJ (2005) Food for protection: an introduction. In: Wäckers FL, PCJ Van Rijn, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Wäckers FL, Zuber D, Wunderlin R, Keller F (2001) The effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Ann Bot 87:365–370

    Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478

    PubMed  CAS  Google Scholar 

  • White JA, Andow DA (2006) Habitat modification contributes to associational resistance between herbivores. Oecologia 148:482–490

    PubMed  Google Scholar 

  • Whitman DW, Eller FJ (1990) Parasitic wasps orient to green leaf volatiles. Chemoecology 1:69–76

    CAS  Google Scholar 

  • Wolfe BE, Husband BC, Klironomos JN (2005) Effects of a belowground mutualism on an aboveground mutualism. Ecol Lett 8:218–223

    Google Scholar 

  • Wootton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25:443–466

    Google Scholar 

  • Zheng S-J, Van Dijk J, Bruinsma M, Dicke M (2007) Sensitivity and speed of induced defense of cabbage (Brassica oleracea L.): dynamics of BoLOX expression patterns during insect and pathogen attack. Mol Plant Micr Int 20:1332–1345

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bruinsma, M., Dicke, M. (2008). Herbivore-Induced Indirect Defense: From Induction Mechanisms to Community Ecology. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_2

Download citation

Publish with us

Policies and ethics