Skip to main content

Jasmonate Biosynthesis and Signaling for Induced Plant Defense against Herbivory

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachmann A, Hause B, Maucher H, Garbe E, Vörös K, Weichert H, Wasternack C, Feussner I (2002) Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol Chem 383:1645–1657

    Article  PubMed  CAS  Google Scholar 

  • Berger S, Bell E, Mullet JE (1996) Two methyl jasmonate-insensitive mutants show altered expression of AtVSP in response to methyl jasmonate and wounding. Plant Physiol 111:525–531

    PubMed  CAS  Google Scholar 

  • Bergey DR, Orozco-Cárdenas M, de Moura DS, Ryan CA (1999) A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci USA 96:1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Blechert S, Bockelmann C, Füβlein M, Von Schrader T, Stelmach B, Niesel U, Weiler EW (1999) Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta 207:470–479

    Article  CAS  Google Scholar 

  • Blee E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–321

    Article  PubMed  CAS  Google Scholar 

  • Böttcher C, Weiler EW (2007) Cyclo-Oxylipin-galactolipids in plants: occurrence and dynamics. Planta 226:629–637

    Article  PubMed  CAS  Google Scholar 

  • Bowles D (1998) Signal transduction in the wound response of tomato plants. Phil Transact Royal Soc 353:1495–1510

    Article  CAS  Google Scholar 

  • Brash AR, Ingram CD, Harris TM (1987) Analysis of a specific oxygenation reaction of soybean lipoxygenase-1 with fatty acids esterified in phospholipids. Biochemistry 26:5465–5471

    Article  PubMed  CAS  Google Scholar 

  • Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, Macheroux P, Clausen T (2006) Crystal structure of 12-oxophytodienoate reductase 3 from tomato: self-inhibition by dimerization. Proc Natl Acad Sci USA 103:14337–14342

    Article  PubMed  CAS  Google Scholar 

  • Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T (2001) X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Structure 9:419–429

    Article  PubMed  CAS  Google Scholar 

  • Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456

    PubMed  CAS  Google Scholar 

  • Buseman CM, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD, et al. (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39

    Article  PubMed  CAS  Google Scholar 

  • Charron JBF, Ouellet F, Pelletier M, Danyluk J, Chauve C, Sarhan F (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol 139:2017–2028

    Article  PubMed  CAS  Google Scholar 

  • Cheong J-J, Choi YD (2007) Signaling pathways for the biosynthesis and action of jasmonates. J Plant Biol 50:122–133

    CAS  Google Scholar 

  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, et al. (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Corbineau F, Rudnicki RM, Côme D (1988) The effects of methyl jasmonate on sunflower (Helianthus annuus L.) seed germination and seedling development. Plant Growth Regul 7:157–169

    CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  PubMed  CAS  Google Scholar 

  • Cruz Castillo M, Martinez C, Buchala A, Metraux JP, Leon J (2004) Gene-specific involvement of beta-oxidation in wound-activated responses in Arabidopsis. Plant Physiol 135:85–94

    Article  PubMed  CAS  Google Scholar 

  • Dathe W, Rönsch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (–)-Jasmonic acid, a plant growth inhibitor in pericarp. Planta 153:530–535

    Article  CAS  Google Scholar 

  • Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  PubMed  CAS  Google Scholar 

  • Delker C, Stenzel I, Hause B, Miersch O, Feussner I, Wasternack C (2006) Jasmonate biosynthesis in Arabidopsis thaliana – enzymes, products, regulation. Plant Biol 8:297–306

    Article  PubMed  CAS  Google Scholar 

  • Delker C, Zolman BK, Miersch O, Wasternack C (2007) Jasmonate biosynthesis in Arabidopsis thaliana requires peroxisomal beta-oxidation enzymes – additional proof by properties of pex6 and aim1. Phytochemistry 68:1642–1650

    Article  PubMed  CAS  Google Scholar 

  • Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de l’essence de jasmin. Helv Chim Acta 45:675–685

    Article  CAS  Google Scholar 

  • Doares SH, Syrovets T, Weiler EW, Ryan CA (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA 92:4095–4098

    Article  PubMed  CAS  Google Scholar 

  • Falkenstein E, Groth B, Mithöfer A, Weiler EW (1991) Methyljasmonate and linolenic acid are potent inducers of tendril coiling. Planta 185:316–322

    Article  CAS  Google Scholar 

  • Farmer EE (2007) Plant biology: jasmonate perception machines. Nature 448:659–660

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1991) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002

    Google Scholar 

  • Farmer EE, Ryan CA. (1990) Interplant Communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  PubMed  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Blake PS, Clay HA (1996) Desiccation stress in recalcitrant Quercus robur L seeds results in lipid peroxidation and increased synthesis of jasmonates and abscisic acid. J Exp Bot 47:661–667

    Article  CAS  Google Scholar 

  • Fox BG, Malone TE, Johnson KA, Madson SE, Aceti M, Bingman CA, Blommel PG, Buchan B, Burns B, Cao J, et al. (2005) X-ray structure of Arabidopsis Atlg77680, 12-oxophytodienoate reductase isoform 1. Proteins 61:206–208

    Article  PubMed  CAS  Google Scholar 

  • Franceschi VR, Grimes HD (1991) Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc Natl Acad Sci USA 88:6745–6749

    Article  PubMed  CAS  Google Scholar 

  • Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J (2004) Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell 16:394–405

    Article  PubMed  CAS  Google Scholar 

  • Green TR, Ryan CA (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid as a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Regul 23:238–245

    CAS  Google Scholar 

  • Hamberg M, Fahlstadius P (1990) Allene oxide cyclase: a new enzyme in plant lipid metabolism. Arch Biochem Biophys 276:518–526

    Article  PubMed  CAS  Google Scholar 

  • Hao BZ, Wu JL (2000) Laticifer differentiation in Hevea brasiliensis: induction by exogenous jasmonic acid and linolenic acid. Ann Bot-London 85:37–43

    Article  CAS  Google Scholar 

  • Hause B, Hause G, Kutter C, Miersch O, Wasternack C (2003a) Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant Cell Physiol 44:643–648

    Article  CAS  Google Scholar 

  • Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C (2000) Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J 24:113–126

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Stenzel I, Miersch O, Wasternack C (2003b) Occurrence of the allene oxide cyclase in different organs and tissues of Arabidopsis thaliana. Phytochemistry 64:971–980

    Article  CAS  Google Scholar 

  • Hayashi M, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A, Yamaya T, Nishimura M (2002) Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid beta-oxidation. Plant Cell Physiol 43:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Hasegawa K, Shigemori H (2003) Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Terahedron Lett 44:5553–5556

    Article  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Sekiguchi M, Hasegawa K, Shigemori H (2005) Oxylipins arabidopsides C and D from Arabidopsis thaliana. J Nat Prod 68:600–603

    Article  PubMed  CAS  Google Scholar 

  • Hofmann E, Zerbe P, Schaller F (2006) The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction. Plant Cell 18:3201–3217

    Article  PubMed  CAS  Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    CAS  Google Scholar 

  • Howe GA, Lightner J, Browse J, Ryan CA (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 11:2067–2077

    Article  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    Article  PubMed  CAS  Google Scholar 

  • Jacinto T, McGurl B, Franceschi V, DelanoFreier J, Ryan CA (1997) Tomato prosystemin promoter confers wound-inducible, vascular bundle-specific expression of the beta-glucuronidase gene in transgenic tomato plants. Planta 203:406–412

    Article  CAS  Google Scholar 

  • Kang J-H, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    Article  PubMed  CAS  Google Scholar 

  • Koo AJK, Chung HS, Kobayashi Y, Howe GA (2006) Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281:33511–33520

    Article  PubMed  CAS  Google Scholar 

  • Kramell R, Miersch O, Hause B, Ortel B, Parthier B, Wasternack C (1997) Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves. FEBS Lett 414:197–202

    Article  PubMed  Google Scholar 

  • Laudert D, Hennig P, Stelmach BA, Müller A, Andert L, Weiler EW (1997) Analysis of 12-oxo-phytodienoic acid enantiomers in biological samples by capillary gas chromatography-mass spectrometry using cyclodextrin stationary phases. Anal Biochem 246:211–217

    Article  PubMed  CAS  Google Scholar 

  • Laudert D, Schaller F, Weiler EW (2000) Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta 211:163–165

    Article  PubMed  CAS  Google Scholar 

  • Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99:6416–6421

    Article  PubMed  CAS  Google Scholar 

  • Li C, Liu G, Xu C, Lee GI, Bauer P, Ling HQ, Ganal MW, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661

    Article  PubMed  CAS  Google Scholar 

  • Li CY, Schilmiller AL, Liu GH, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, et al. (2005) Role of beta-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    Article  PubMed  CAS  Google Scholar 

  • Liechti R, Farmer EE (2002) The jasmonate pathway. Science 296:1649–1650

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    Article  PubMed  CAS  Google Scholar 

  • Malone TE, Madson SE, Wrobel RL, Jeon WB, Rosenberg NS, Johnson KA, Bingman CA, Smith DW, Phillips GN, Markley JL, et al. (2005) X-ray structure of Arabidopsis At2g06050,12-oxophytodienoate reductase isoform 3. Proteins 58:243–245

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    Article  PubMed  CAS  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    Article  PubMed  CAS  Google Scholar 

  • McGurl B, Pearce G, Orozco-Cárdenas M, Ryan CA (1992) Structure, expression and antisense inhibition of the systemin precursor gene. Science 255:1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Miersch O, Büttner C, Dathe W, Sembdner G (1984) Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regul 3:1–8

    Article  CAS  Google Scholar 

  • Mueller-Uri F, Parthier B, Nover L (1988) Jasmonate-induced alteration of gene expression in barley leaf segments analyzed by in-vivo and in-vitro protein synthesis. Planta176:241–247

    Article  CAS  Google Scholar 

  • Nakamura Y, Kiyota H, Kumagai T, Ueda M (2006a) Direct observation of the target cell for jasmonate-type leaf-closing factor: genus-specific binding of leaf-movement factors to the plant motor cell. Tetrahedron Lett 47:2893–2897

    Article  CAS  Google Scholar 

  • Nakamura Y, Miyatake R, Matsubara A, Kiyota H, Ueda M (2006b) Enantio-diffferential approach to identify the target cell for glucosyl jasmonate-type leaf-closing factor, by using fluorescence-labeled probe compounds. Tetrahedron 62:8805–8813

    Article  CAS  Google Scholar 

  • Narváez-Vásquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360–369

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    Article  PubMed  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2007) Co(i)-ordinating defenses: NaCOI1 mediates herbivore-induced resistance in Nicotiana attenuata and reveals the role of herbivore movement in avoiding defenses. Plant J 51:79–91

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–898

    Article  PubMed  CAS  Google Scholar 

  • Pelacho AM, Mingo-Castel AM (1991) Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiol 97:1253–1255

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Schaller A, Mauch-Mani B, Conrath U (2006). Signaling in plant resistance responses: divergence and cross-talk of defense pathways. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 166–196

    Chapter  Google Scholar 

  • Pozo MJ, Van Loon LC, Pieterse CMJ (2004) Jasmonates – signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Rojo E, Titarenko E, Leon J, Berger S, Vancanneyt G, Sanchez-Serrano JJ (1998) Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana. Plant J 13:153–165

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (1992) The search for the proteinase inhibitor-inducing factor, PIIF. Plant Mol Biol 19:123–133

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. BBA-Protein Struct M 1477:112–121

    CAS  Google Scholar 

  • Ryan CA, Moura DS (2002) Systemic wound signaling in plants: a new perception. Proc Natl Acad Sci USA 99:6519–6520

    Article  PubMed  CAS  Google Scholar 

  • Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signal that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci USA 100:14577–14580

    Article  PubMed  CAS  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1042–1061

    Article  Google Scholar 

  • Schaller F, Biesgen C, Müssig C, Altmann T, Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984

    Article  PubMed  CAS  Google Scholar 

  • Schaller A, Oecking C (1999) Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11:263–272

    Article  PubMed  CAS  Google Scholar 

  • Schaller F, Schaller A, Stintzi A (2004) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179–199

    CAS  Google Scholar 

  • Schaller F, Weiler EW (1997) Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thaliana. Structural and functional relationship to yeast old yellow enzyme. J Biol Chem 272:28066–28072

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Koo AJK, Howe GA (2007) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143:812–824

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Kienow L, Schmelzer E, Colby T, Bartsch M, Miersch O, Wasternack C, Kombrink E, Stuible HP (2005) A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J Biol Chem 280:13962–13972

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793

    Article  PubMed  CAS  Google Scholar 

  • Sobajima H, Takeda M, Sugimori M, Kobashi N, Kiribuchi K, Cho EM, Akimoto C, Yamaguchi T, Minami E, Shibuya N, et al. (2003) Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells. Planta 216:692–698

    PubMed  CAS  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Stelmach BA, Müller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler EW (2001) A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838

    Article  PubMed  CAS  Google Scholar 

  • Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C (2003a) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato – amplification in wound signalling. Plant J 33:577–589

    Article  CAS  Google Scholar 

  • Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003b) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51:895–911

    Article  CAS  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837–12842

    Article  PubMed  CAS  Google Scholar 

  • Straβner J, Fürholz A, Macheroux P, Amrhein N, Schaller A (1999) A homolog of old yellow enzyme in tomato. Spectral properties and substrate specificity of the recombinant protein. J Biol Chem 274:35067–35073

    Article  Google Scholar 

  • Strassner J, Schaller F, Frick UB, Howe GA, Weiler EW, Amrhein NA, Macheroux P, Schaller A (2002) Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32:585–601

    Article  PubMed  CAS  Google Scholar 

  • Stratmann JW (2003) Long distance run in the wound response – jasmonic acid is pulling ahead. Trends Plant Sci 8:247–250

    Article  PubMed  CAS  Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, et al. (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283

    Article  PubMed  CAS  Google Scholar 

  • Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2007) Identifcation of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta DOI 10.1007/s00425-007-0635-7

    Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonoic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Tilton G, Shockey J, Browse J (2000) Two families of acyl-CoA thioesterases in Arabidopsis. Biochem Soc T 28:946–947

    Article  CAS  Google Scholar 

  • Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249

    PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461

    Article  PubMed  CAS  Google Scholar 

  • von Malek B, van der Graaff E, Schneitz K, Keller B (2002) The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192

    Article  CAS  Google Scholar 

  • Wang C, Avdiushko S, Hildebrand DF (1999) Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced accumulation of jasmonic acid in transgenic tobacco. Plant Mol Biol 40:783–793

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2006). Oxylipins: biosynthesis, signal transduction and action. In: Hedden P Thomas SG (eds) Plant hormone signalling. Blackwell Publishing, Oxford, UK, pp 185–228

    Google Scholar 

  • Wasternack C (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. In Ann Bot, pp 1–17

    Google Scholar 

  • Wasternack C, Ortel B, Miersch O, Kramell R, Beale M, Greulich F, Feussner I, Hause B, Krumm T, Boland W, et al. (1998) Diversity in octadecanoid-induced gene expression of tomato. J Plant Physiol 152:345–352

    CAS  Google Scholar 

  • Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato – role of jasmonic acid. J Plant Physiol 163:297–306

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478

    Article  PubMed  CAS  Google Scholar 

  • Weidhase RA, Kramell HM, Lehmann J, Liebisch HW, Lerbs W, Parthier B (1987) Methyl jasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51:177–186

    Article  CAS  Google Scholar 

  • Xie D-X, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Xu LH, Liu FQ, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang DF, Xie DX (2002) The SCFCOl1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara T, Omer E-SA, Koshino H, Sakamura S, Kikuta Y, Koda Y (1989) Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 53:2835–2837

    CAS  Google Scholar 

  • Zerbe P, Weiler EW, Schaller F (2007) Preparative enzymatic solid phase synthesis of cis(+)-12-oxo-phytodienoic acid – physical interaction of AOS and AOC is not necessary. Phytochemistry 68:229–236

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J, Keinanen M, Baldwin IT (2001) Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuata. Phytochemistry 58:729–738

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J, Wasternack C, Hamberg M (1999) On the specificity of allene oxide cyclase. Lipids 34:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol 127:1266–1278

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schaller, A., Stintzi, A. (2008). Jasmonate Biosynthesis and Signaling for Induced Plant Defense against Herbivory. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_17

Download citation

Publish with us

Policies and ethics