Skip to main content

Nanofluid Suspensions and Bi-composite Media as Derivatives of Interface Heat Transfer Modeling in Porous Media

  • Chapter
Emerging Topics in Heat and Mass Transfer in Porous Media

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 22))

Abstract

Spectacular heat transfer enhancement has been measured in nanofluid suspensions. Attempts in explaining these experimental results did not yield yet a definite answer. Modelling the heat conduction process in nanofluid suspensions is being shown to be a special case of heat conduction in porous media subject to Lack of Local thermal equilibrium (LaLotheq). Similarly, the modelling of heat conduction in bi-composite systems is also equivalent to the applicable process in porous media. The chapter reviews the topic of heat conduction in porous media subject to Lack of Local thermal equilibrium (LaLotheq), introduces one of the most accurate methods of measuring the thermal conductivity, the transient hot wire method, and discusses its possible application to dual-phase systems. Maxwell’s concept of effective thermal conductivity is then introduced and theoretical results applicable for nanofluid suspensions are compared with published experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alazmi, B. and Vafai, K. 2002 Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions, Int. J. Heat Mass Transfer 45, 3071–3087.

    Article  MATH  Google Scholar 

  • Amiri, A. and Vafai, K. 1994 Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media, Int. J. Heat Mass Transfer 37, 934–954.

    Article  Google Scholar 

  • Assael, M.J., Dix, M., Gialou, K., Vozar, L., and Wakeham, W.A. 2002 Application of the transient hot-wire technique to the measurement of the thermal conductivity of solids, Int. J. Thermophys. 23, 615–633.

    Article  Google Scholar 

  • Assael, M.J., Chen, C.-F., Metaxa, I., and Wakeham, W.A. 2004 Thermal conductivity of suspensions of carbon nanotubes in water, Int. J. Thermophys. 25, 971–985.

    Article  Google Scholar 

  • Banu, N. and Rees, D.A.S. 2002 Onset of Darcy–Benard convection using a thermal non-equilibrium model, Int. J. Heat Mass Transfer 45, 2221–2238.

    Article  MATH  Google Scholar 

  • Batchelor, G.K. 1972 Sedimentation in a dilute dispersion of spheres, J. Fluid Mech. 52, 45–268.

    Article  Google Scholar 

  • Batchelor, G.K. and Green, J.T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, J. Fluid Mech. 56, 375–400.

    Article  MATH  Google Scholar 

  • Baytas, A.C. and Pop, I. 2002 Free convection in a square porous cavity using a thermal nonequilibrium model, Int. J. Thermal Sci. 41, 861–870.

    Article  Google Scholar 

  • Bentley, J.P. 1984 Temperature sensor characteristics and measurement system design, J. Phys. E: Sci. Instrum. 17, 430–439.

    Article  Google Scholar 

  • Bonnecaze, R.T. and Brady, J.F. 1990 A method for determining the effective conductivity of dispersions of particles, Proc. R. Soc. Lond. A, 430, 285–313.

    MATH  Google Scholar 

  • Bonnecaze, R.T. and Brady, J.F. 1991 The effective conductivity of random suspensions of spherical particles, Proc. R. Soc. Lond. A, 432, 445–465.

    Article  Google Scholar 

  • Chen, G. 1996 Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles, J. Heat Transfer 118, 539–545.

    Article  Google Scholar 

  • Chen, G., 2000 Particularities of heat conduction in nanostructures, J. Nanoparticle Res.2, 199–204.

    Article  Google Scholar 

  • Chen, G. 2001 Balistic-diffusive heat-conduction equations, Phys. Rev. Lett. 86 (11), 2297–2300.

    Article  Google Scholar 

  • Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., and Grulke, E.A. 2001 Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252–2254.

    Article  Google Scholar 

  • Coquard, R., Bailis, D. 2006 Modeling of heat transfer in low-denisty EPS foams, J. Heat Transfer 128, 538–549.

    Article  Google Scholar 

  • Coquard, R., Bailis, D., and Quenard, D. 2006 Experimental and theoretical study of the hot-wire method applied to low-density thermal insulators, Int. J. Heat Mass Transfer 49, 4511–4524.

    Article  MATH  Google Scholar 

  • Davis, R.H. 1986 The effective thermal conductivity of a composite material with spherical inclusions, Int. J. Thermophys. 7, 609–620.

    Article  Google Scholar 

  • De Groot, J.J., Kestin, J., and Sookiazian, H. 1974 Instrument to measure the thermal conductivity of gases, Physica 75, 454–482.

    Article  Google Scholar 

  • Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thompson, L.J. 2001 Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78, 718–720.

    Article  Google Scholar 

  • Hamilton, R.L. and Crosser, O.K. 1962 Thermal conductivity of heterogeneous two-component systems, I&EC Fundamentals 1, 187–191.

    Article  Google Scholar 

  • Hammerschmidt, U. and Sabuga, W., 2000 Transient hot wire (THW) method: Uncertainty assessment, Int. J. Thermophys. 21, 1255–1278.

    Article  Google Scholar 

  • Healy, J.J., de Groot, J.J. and Kestin, J. 1976 The theory of the transient hot-wire method for measuring thermal conductivity, Physica 82C, 392–408.

    Google Scholar 

  • Huxtable, S.T., Cahill, D.G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M., Strano, M.S., Siddons, G., Shim, M., and Keblinski, P. 2003 Interfacial heat flow in carbon nanotube suspensions, Nat. Mater. 2, 731–734.

    Article  Google Scholar 

  • Jang, S.P., and Choi, S.U.-S. 2004 Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett. 84 (21), 4316–4318.

    Article  Google Scholar 

  • Jeffrey, D.J., 1973 Conduction through a random suspension of spheres, Proc. R. Soc. Lond. A, 335, 355–367.

    Google Scholar 

  • Keblinski, P., Phillpot, S.R., Choi,\marginpar{\fbox{AQ1}} S.U.S. and Eastman, J.A. 2002 Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer 45,855–863.

    Article  MATH  Google Scholar 

  • Kestin, J. and Wakeham, W.A. 1978 A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements, Physica 92A, 102–116.

    Google Scholar 

  • Kim, S.J. and Jang, S.P. 2002 Effects of Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium, Int. J. Heat Mass Transfer 45,3885–3896.

    Article  MATH  Google Scholar 

  • Kuwahara, F., Shirota, M. and Nakayama, A. 2001 A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media, Int. J. Heat Mass Transfer 44, 1153–1159.

    Article  MATH  Google Scholar 

  • Lage, J.L. 1999 The implications of the thermal equilibrium assumption for surrounding-driven steady conduction within a saturated porous medium layer, Int. J. Heat Mass Transfer 42,477–485.

    Article  MATH  Google Scholar 

  • Lee, S. Choi, S.U.-S. Li, S. and Eastman, J.A. 1999 Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer 121, 280–289.

    Article  Google Scholar 

  • Li, C.H. and Peterson, G.P. 2006 Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. Appl. Phys. 99, p. 084314.

    Article  Google Scholar 

  • Liu, M.S., Lin, M.C.C., Tsai, C.Y. and Wang, C.C. 2006 Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J. Heat Mass Transfer 49, 3028–3033.

    Article  Google Scholar 

  • Lu, S. and Lin, H. 1996 Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity, J. Appl. Physics 79, 6761–6769.

    Article  Google Scholar 

  • Martinsons, C., Levick, A., and Edwards, G. 2001 Precise measurements of thermal diffusivity by photothermal radiometry for semi-infinite targets using accurately determined boundary conditions, Anal. Sci. 17, 114–117.

    Google Scholar 

  • Maxwell, J.C. 1891 A Treatise on Electricity and Magnetism, 3rd edition, Clarendon Press, 1954 reprint, Dover, NY, pp. 435–441.

    Google Scholar 

  • Minkowycz, W.J., Haji-Shiekh, A., and Vafai, K. 1999 On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The sparrow number, Int. J. Heat Mass Transfer 42, 3373–3385.

    Article  MATH  Google Scholar 

  • Nagasaka, Y. and Nagashima, A. 1981 Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, J. Phys. E: Sci. Instrum. 14, 1435–1440.

    Article  Google Scholar 

  • Nield, D.A., and Bejan, A. 2006 Convection in Porous Media, 3rd Edition, Springer-Verlag, New-York.

    Google Scholar 

  • Nield, D.A. 1998 Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: Forced convection in a channel, J. Porous Media 1, 181–186.

    MATH  Google Scholar 

  • Nield, D.A. 2002 A note on the modeling of local thermal non-equilibrium in a structured porous medium, Int. J. Heat Mass Transfer 45, 4367–4368.

    Article  MATH  Google Scholar 

  • Nield, D.A., Kuznetsov, A.V. and Xiong, M. 2002 Effect of local thermal non-equilibrium on thermally developing forced convection in a porous medium, Int. J. Heat Mass Transfer 45, 4949–4955.

    Article  MATH  Google Scholar 

  • Özisik, M.N. 1993 Heat Conduction. 2nd edition, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Prasher, R. Bhattacharya, P., and Phelan, P.E. 2005 Thermal conductivity of nanoscale colloidal solutions (Nanofluids), Phys. Rev. Lett. 94, p. 025901.

    Article  Google Scholar 

  • Putnam, S.A., Cahill, D.G., Braun, P.V., Ge, Z., and Shimmin, R.G 2006 Thermal conductivity of nanoparticle suspensions, J. Appl. Phys. 99, p. 084308.

    Article  Google Scholar 

  • Quintard, M. and Whitaker, S. 1995 Local thermal equilibrium for transient heat conduction: Theory and comparison with numerical experiments, Int. J. Heat Mass Transfer 38,2779–2796.

    Article  MATH  Google Scholar 

  • Rees, D.A.S. 2002 Vertical free convective boundary-layer flow in a porous medium using a thermal nonequilibrium model: Elliptical effects, Zeitchrift fur angewandte Mathematik und Physik ZAMP 53, 1–12.

    Article  MathSciNet  Google Scholar 

  • Tzou, D.Y. 1997 Macro-to-Microscale Heat Transfer, The Lagging Behavior, Taylor & Francis, Washington, DC.

    Google Scholar 

  • Tzou, D.Y. 1995 A unified field approach for heat conduction from macro-to-micro-scales, J. Heat Transfer 117, 8–16.

    Article  Google Scholar 

  • Vadasz, P. 2004 Absence of oscillations and resonance in porous media Dual–Phase–Lagging Fourier heat conduction, J. Heat Transfer 127, 307–314.

    Article  Google Scholar 

  • Vadasz, P. 2005a Explicit conditions for local thermal equilibrium in porous media heat conduction, Trans. Porous Media 59, 341–355.

    Article  Google Scholar 

  • Vadasz, P. 2005b Lack of oscillations in Dual–Phase–Lagging heat conduction for a porous slab subject to imposed heat flux and temperature, Int. J. Heat Mass Transfer 48, 2822–2828.

    Article  Google Scholar 

  • Vadasz, P. 2006a Exclusion of oscillations in heterogeneous and bi-composite media thermal conduction, Int. J. Heat Mass Transfer 49, 4886–4892.

    Article  MATH  Google Scholar 

  • Vadasz, P. 2006b Heat conduction in nanofluid suspensions, J. Heat Transfer 128, 465–477.

    Article  Google Scholar 

  • Vadasz, P. 2007a On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium, Int. J. Heat Mass Transfer 50, 4131–4140.

    Article  MATH  Google Scholar 

  • Vadasz, P. 2007b Nanofluid suspensions: Possibility for heat transfer enhancement, in preparation.

    Google Scholar 

  • Vadasz, J.J., Govender, S., and Vadasz, P. 2005 Heat transfer enhancement in nanofluids suspensions: possible mechanisms and explanations, Int. J. Heat Mass Transfer 48, 2673–2683.

    Article  Google Scholar 

  • Vadasz, P. and Nield, D.A. 2007 Extending the Duhamel theorem to dual phase applications, Int. J. Heat Mass Transfer, in press, doi:10.1016/j.ijheatmasstransfer.2007.03.054

    Google Scholar 

  • Wakao, N., Kaguei, S. and Funazkri, T. 1979 Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds, Chem. Engng. Sci. 34, 325–336.

    Article  Google Scholar 

  • Wakao, N. and Kaguei, S. 1982 Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds, Heat and Mass Transfer in Packed Beds, Gordon and Breach, New York.

    Google Scholar 

  • Xuan, Y. and Li, Q. 2000 Heat transfer enhancement of nanofluids, Int. J. Heat Mass Transfer 21, 58–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Vadász, P. (2008). Nanofluid Suspensions and Bi-composite Media as Derivatives of Interface Heat Transfer Modeling in Porous Media. In: Vadász, P. (eds) Emerging Topics in Heat and Mass Transfer in Porous Media. Theory and Applications of Transport in Porous Media, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8178-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8178-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8177-4

  • Online ISBN: 978-1-4020-8178-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics