Skip to main content

Communication Protocols for Sensor Nerworks

  • Chapter
Book cover Wireless Sensor Networks

Abstract

This chapter describes about the challenges and essence of designing communication protocols for wireless sensor networks. The sensor nodes are densely deployed and collaboratively work together to provide higher quality sensing in time and space as compared to traditional stationary sensors. The applications of these sensor nodes as well as the issues in the transport, network, datalink, and physical layers are discussed. For applications that require precise timing, different types of timing techniques are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Agre, J., and Clare, L., “An Integrated Architecture for Cooperative Sensing Networks,” IEEE Computer Magazine, pp.106–108, May 2000.

    Google Scholar 

  2. Balakrishnan, H., Padmanabhan, V. N., Seshan, S., and Katz, R. H., “A Comparison of Mechanisms for Improving TCP Performance over Wireless Links,” IEEEIACM Trans. Networking, vol. 5, no. 6, pp. 756–769, December 1997.

    Article  Google Scholar 

  3. Bhardwaj, M., Garnett, T., and Chandrakasan, A. P., “Upper Bounds on the Lifetime of Sensor Networks, ” IEEE International Conference on Communications’ 01, Helsinki, Finland, June 2001.

    Google Scholar 

  4. Bonnet, P., Gehrke J., and Seshadri, P., “Querying the Physical World, ” IEEE Personal Communications, pp. 10–15, October 2000.

    Google Scholar 

  5. Bulusu, N., Estrin, D., Girod, L., and Heidemann, J., “Scalable Coordination for Wireless Sensor Networks: Self-configuring Localization Systems, ” International Symposium on Communication Theory and Applications (ISCTA 2001), Ambleside, UK, July 2001.

    Google Scholar 

  6. Chien, C., Elgorriaga, I., and McConaghy, C., “Low-Power Direct-Sequence Spread-Spectrum Modem Architecture For Distributed Wireless Sensor Networks, ” in ISLPED’ 01, Huntington Beach, California, USA, August 2001.

    Google Scholar 

  7. Crarner, R.J., Win, M. Z., and Scholtz, R. A., “Impulse radio multipath characteristics and diversity reception, ” IEEE International Conference on Communications’ 98, vol. 3, pp. 1650–1654, 1998.

    Google Scholar 

  8. Elson, J., and Estrin, D., “Random, Ephemeral Transaction Identifiers in Dynamic Sensor Networks, ” Proceedings 21st International Conference on Distributed Computing Systems,pp. 459–468, Phoenix, Arizona, USA, April 2001.

    Google Scholar 

  9. Elson, J., Girod, L., and Estrin, D., “Fine-Grained Network Time Synchronization using Reference Broadcasts, ” in Proceedings of the Fifth Symposium on Operating Systems Design and Implementation (OSDI 2002), Boston, MA, USA, December 2002.

    Google Scholar 

  10. Estrin, D., Girod, L., Pottie, G., and Srivastava, M., “Instrumenting the World With Wireless Sensor Networks, ” International Conference on Acoustics, Speech, and Signal Processing (ICASSP 200I), Salt Lake City, Utah, USA, May 2001.

    Google Scholar 

  11. Estrin, D., Govindan, R., Heidemann, J., and Kumar, S., “Next Century Challenges: Scalable Coordination in Sensor Networks, ” ACM Mobicom’99, pp.263–270, Seattle, Washingtion, USA, August 1999.

    Google Scholar 

  12. Estrin, D., Govindan R., and Heidemann J., “Embedding the Internet, ” Commun. ACM, vol. 43, pp. 38–41, May 2000.

    Article  Google Scholar 

  13. Favre, P. and et al., “A 2V, 600pA, 1 GHz BiCMOS Super Regenerative Receiver for ISM Applications, ” IEEE J. Solid-State Circuits, vol. 33, pp.2186–2196, December 1998.

    Article  Google Scholar 

  14. Floyd, S., Jacobson, V., Liu, C., Macanne, S., and Zhang, L., “A Reliable Multicast Framework for Lightweight Sessions and Application Level Framing, ” IEEE/ACM Trans. Networking, vol. 5, no. 6, pp.784–803, December 1997.

    Article  Google Scholar 

  15. Hedetniemi, S., Hedetniemi, S., and Liestman, A., “A Survey of Gossiping and Broadcasting in Communication Networks, ” Networks, vol. 18, no. 4, pp. 319–349, 1988.

    MATH  MathSciNet  Google Scholar 

  16. Heinzelman, W. R., Kulik, J., and Balakrishnan, H., “Adaptive Protocols for Information Dissemination in Wireless Sensor Networks, ” ACM Mobicom’99, pp. 174–185, Seattle, Washington, USA, August 1999.

    Google Scholar 

  17. Heinzelman, W. R., Chandrakasan, A,, and Balakrishnan, H., “Energy-Efficient Communication Protocol for Wireless Microsensor Networks, ” IEEE Proceedings of the Hawaii International Conference on System Sciences, pp. 1–10, Maui, Hawaii, USA, January 2000.

    Google Scholar 

  18. Intanagonwiwat, C., Govindan, R., and Estrin, D., “Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks, ” ACM Mobicom’OO, pp. 56–67, Boston, MA, USA, August 2000.

    Google Scholar 

  19. Tilak, S., Abu-Ghazaleh, N. B., and Heinzelman, W., “Infrastructure Tradeoffs for Sensor Networks, ” In Proc. WSNA 2002, Atlanta, GA, USA, September 2002.

    Google Scholar 

  20. Jaikaeo, C., Srisathapornphat, C., and Shen, C., “Diagnosis of Sensor Networks, ” IEEE International Conference on Communications’ 01, Helsinki, Finland, June 2001.

    Google Scholar 

  21. Kahn, J. M., Katz, R. H., and Pister, K. S. J., “Next Century Challenges: Mobile Networking for Smart Dust, ” ACM Mobicom’99, pp.271–278, Seattle, Washington, USA, August 1999.

    Google Scholar 

  22. Lee, H., Han, B., Shin, Y., and Im, S., “Multipath characteristics of impulse radio channels, ” Vehicular Technology Conference Proceedings 2000, vol. 3, pp. 2487–2491, Tokyo, Japan, May 2000.

    Google Scholar 

  23. Levine, J., “Time Synchronization Over the Internet Using an Adaptive Frequency-Locked Loop, ” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 4, pp. 888–896, July 1999.

    Article  Google Scholar 

  24. Li, L., and Halpern, J. Y., “Minimum-Energy Mobile Wireless Networks Revisited, ” IEEE International Conference on Communications ICC’OI, Helsinki, Finland, June 2001.

    Google Scholar 

  25. J. Le Martret, C. and Giannakis, G. B., “All-Digital Impulse radio for MUI/ISI-resilient multiuser communications over frequency-selective multipath channels, ” MILCOM 2000. 21st Century Military Communications Conference Proceedings, vol. 2, pp. 655-659, Los Angeles, CA, USA, October 2000.

    Google Scholar 

  26. Melly, T., Porret, A., Enz, C. C., and Vittoz, E. A,, “A 1.2 V, 430 MHz, 4dBm Power Amplifier and a 250 pW Front-End, using a Standard Digital CMOS Process” IEEE International Symposium on Low Power Electronics and Design Con$, pp.233–237, San Diego, CA, USA, August 1999.

    Google Scholar 

  27. Mills, D. L. (1994). “Internet Time Synchronization: The Network Time Protocol, ” In Z. Yang and T A. Marsland, editors, Global States and Time in Distributed Systems. IEEE Computer Society Press.

    Google Scholar 

  28. Mills, D. L., “Adaptive Hybrid Clock Discipline Algorithm for the Network Time Protocol, ” IEEE/ACM Trans. on Networking, vol. 6, no. 5, pp. 505–514, October 1998.

    Article  MathSciNet  Google Scholar 

  29. Mireles, F. R. and Scholtz, R. A., “Performance of equicorrelated ultra-wideband pulseposition-modulated signals in the indoor wireless impulse radio channel, ” IEEE Conference on Communications, Computers and Signal Processing’ 97, vol. 2, pp 640–644, Victoria, BC, Canada, August 1997.

    Google Scholar 

  30. Mirkovic, J., Venkataramani, G. P., Lu, S., and Zhang, L., “A Self-organizing Approach to Data Forwarding in Large-Scale Sensor Networks, ” IEEE International Conference on Communications ICC’OI, Helsinki, Finland, June 2001.

    Google Scholar 

  31. Perkins, C. (2000). Ad Hoc Networks. Addison-Wesley.

    Google Scholar 

  32. Perrig, A., Szewczyk, R., Wen, V., Culler, D., and Tygar, J. D., “SPINS: Security Protocols for Sensor Networks, ” Proc. of ACM MobiCom’OI, pp. 189–199, Rome, Italy, July 2001.

    Google Scholar 

  33. Porret, A., Melly, T., Enz, C. C., and Vittoz, E. A., “A Low-Power Low-Voltage Transceiver Architecture Suitable for Wireless Distributed Sensors Network, ” IEEE International Symposium on Circuits and Systems’ 00, vol. 1, pp.56–59, Geneva, Switzerland, May 2000.

    Google Scholar 

  34. Pottie, G.J. and Kaiser, W.J., “Wireless Integrated Network Sensors, ” Communications of the ACM, vol. 43, no. 5, pp. 551–8, May 2000.

    Article  Google Scholar 

  35. Wan, C. Y., Campbell, A. T., and Krishnamurthy, L., “PSFQ: A Reliable Transport Protocol for Wireless Sensor Networks, ” In Proc. WSNA 2002, Atlanta, GA, USA, September 2002.

    Google Scholar 

  36. Rabaey, J., Ammer, J., L. da Silva Jr., J., and Patel, D., “PicoRadio: Ad-hoc Wireless Networking of Ubiquitous Low-Energy Sensor/Monitor Nodes, ” Proceedings of the IEEE Computer Society Annual Workshop on VLSl (WVLSI’OO), pp. 9–12, Orlanda, Florida, USA, April 2000.

    Google Scholar 

  37. Rabaey, J. M., Ammer, M. J., L. da Silva Jr., J., Patel, D., and Roundy, S., “PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking, ” IEEE Computer Magazine, vol. 33, pp. 42–48, July 2000.

    Google Scholar 

  38. Sankarasubramaniam, Y., Akan, 0. B., and Akyildiz, I. F., “ESRT: Event-to-Sink Reliable Transport for Wireless Sensor Networks, ” in Proc. ACM MOBIHOC 2003, pp. 177–188, Annapolis, Maryland, USA, June 2003.

    Google Scholar 

  39. Savvides, A., Han, C., and Srivastava, M., “Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors, ” Proc. of ACM MobiCom’Ol, pp. 166–179, Rome, Italy, July 2001.

    Google Scholar 

  40. Shen, C., Srisathapornphat, C., and Jaikaeo, C., “Sensor Information Networking Architecture and Applications, ” IEEE Personal Communications, pp. 52–59, August 2001.

    Google Scholar 

  41. Shih, E., Cho, S., Ickes, N., Min, R., Sinha, A,, Wang, A., and Chandrakasan, A., “Physical layer Driven Protocol and Algorithm Design for Energy-Efficient Wireless Sensor Networks, ” ACM Mobicom’01, pp. 272–286, Rome, Italy, July 2001.

    Google Scholar 

  42. Slijepcevic, S. and Potkonjak, M., “Power Efficient Organization of Wireless Sensor Networks, ” IEEE International Conference on Communications’ 01, Helsinki, Finland, June 2001.

    Google Scholar 

  43. Sohrabi, K., Manriquez, B., and Pottie, G. J., “Near-ground Wideband Channel Measurements in 800–1000 MHz, ” IEEE Proc.of 49th Vehicular Technology Conference, Houston, TX, USA, May 1999.

    Google Scholar 

  44. Sohrabi, K., Gao, J., Ailawadhi, V., and Pottie, G. J., “Protocols for Self-organization of a Wireless Sensor Network, ” IEEE Personal Communications, pp. 16–27, October 2000.

    Google Scholar 

  45. Su, W. and Akyildiz, I. F., “Time-Diffusion Synchronization Protocol for Sensor Networks, ” Georgia Tech Technical Report, 2003.

    Google Scholar 

  46. Warneke, B., Liebowitz, B., and Pister, K. S. J., “Smart Dust: Communicating with a Cubic-Millimeter Computer, ” IEEE Computer Magazine, pp. 2–9, January 2001.

    Google Scholar 

  47. Wicker, S. (1995). Error Control Coding for Digital Communication and Storage. Prentice-Hall.

    Google Scholar 

  48. Woo, A. and Culler, D., “A Transmission Control Scheme for Media Access in Sensor Networks, ” ACM Mobicom’01, pp.221–235, Rome, Italy, July 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Su, W., Akan, Ö.B., Cayirci, E. (2004). Communication Protocols for Sensor Nerworks. In: Raghavendra, C.S., Sivalingam, K.M., Znati, T. (eds) Wireless Sensor Networks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7884-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7884-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-35269-5

  • Online ISBN: 978-1-4020-7884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics