Skip to main content

Fundamental Limits of Networked Sensing

The Flow Optimization Framework

  • Chapter
  • 960 Accesses

Abstract

We describe a useful theoretical approach — the flow optimization framework — that can be used to identify the fundamental performance limits on information routing in energy-limited wireless sensor networks. We discuss the relevant recent literature, and present both linear constant-rate and non-linear adaptive rate models that optimize the tradeoff between the total information extracted (Bits) and the total energy used (Joules) for a given sensor network scenario. We also illustrate the utility of this approach through examples, and indicate possible extensions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-Efficient Cornmunication Protocol for Wireless Microsensor Networks,” Proc. Hawaii Conference on System Sciences, Jan. 2000.

    Google Scholar 

  2. S. Lindsey, C. S. Raghavendra, “PEGASIS: Power Efficient GAthering in Sensor Information Systems,” Proc. ICC, 2001.

    Google Scholar 

  3. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks,” Proc. ACM Mobicom, Boston MA, August 2000.

    Google Scholar 

  4. F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-tier data dissemination model for large-scale wireless sensor networks,” Proc. Eighth ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom’ 02), Atlanta, Georgia, USA, September 2002.

    Google Scholar 

  5. S. Ratnasarny, et al. “GHT: A Geographic Hash Table for Data-Centric Storage,” Proc. First ACM International Workshop on Wireless Sensor Networks and Applications (WSNA’ 02), September 2002.

    Google Scholar 

  6. P. Bonnet, J. E. Gehrke, and P. Seshadri, “Querying the Physical World,” IEEE Personal Communications, vol. 7, no. 5, October 2000.

    Google Scholar 

  7. R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin, S. Shenker, “The Sensor Network as a Database,”, Technical Report 02-77, Computer Science Department, University of Southern California, September 2002.

    Google Scholar 

  8. M. Chu, H. Haussecker, F. Zhao, “Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks.” International Journal of High Performance Computing Applications, 2002.

    Google Scholar 

  9. N. Sadagopan, B. Krishnamachari, and A. Helmy, “the ACQUIRE Mechanism for Efficient Querying in Sensor Networks,” First IEEE International Workshop on Sensor Network Protocols and Applications (SNPA103) May 2003.

    Google Scholar 

  10. D. Bertsekas and R. Gallager Data Networks, Prentice Hall, 1987.

    Google Scholar 

  11. A. Ephremides and B. Hajek, ”Information theory and communication networks: An unconsummated union,” IEEE Transactions on Information Theory (Commemorative Issue), 44:2384–2415, 1998.

    Article  MathSciNet  Google Scholar 

  12. P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,” IEEE Transactions on Information Theory, vol. IT-46,no. 2, pp. 388–404, March 2000.

    Article  MathSciNet  Google Scholar 

  13. L.-L. Xie and P. R. Kumar, “A Network Information Theory for Wireless Communication: Scaling Laws and Optimal Operation.” Submitted to IEEE Transactions on Information Theory, April 2002. Available online at <http://decision.csl.uiuc.edu/Nprkumar/publications.htd>.

    Google Scholar 

  14. M. Grossglauser, D. Tse, “Mobility Increases the Capacity of Ad-hoc Wireless Networks,” INFOCOM, pp. 1360–69,2001.

    Google Scholar 

  15. S. Yi, Y. Pei, S. Kalyanararnan, “On the Capacity Improvement of Ad Hoc Wireless Networks Using Directional Antennas,” Mobihoc’ 03, Annapolis, Maryland, 2003.

    Google Scholar 

  16. A. Scaglione, S. D. Servetto, “On the Interdependence of Routing and Data Compression in Multi-Hop Sensor Networks,” 8th ACM international Conference on Mobile Computing and Networking (MobiCom), Atlanta, GA, September 2002.

    Google Scholar 

  17. D. Marco, E. Duarte-Melo, M. Liu and D. L. Neuhoff, “On the many-to-one transport capacity of a dense wireless sensor network and the compressibility of its data”, in Proc. International Workshop on Information Processing in Sensor Networks (IPSN), April 2003.

    Google Scholar 

  18. B. Krishanamachari, D. Estrin and S. Wicker, “The Impact of Data Aggregation in Wireless Sensor Networks,” International Workshop of Distributed Event Based Systems (DEBS), Vienna, Austria, July 2002.

    Google Scholar 

  19. Ashish Goel and Deborah Estrin, “Simultaneous Optimization for Concave Costs: Single Sink Aggregation or Single Source Buy-at-Bulk,” Proc. ACM-SIAM Symposium on Discrete Algorithms, 2003.

    Google Scholar 

  20. B. Krishnamachari and J. Heidemann, “Application-specific Modelling of Information Routing in Sensor Networks,” unpublished manuscript, 2003. Available online at <http://ceng.usc.edu/Nbkrishna>.

    Google Scholar 

  21. R. K. Ahuja, T. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, New Jersey, 1993.

    Google Scholar 

  22. S. Toumpis and A.J. Goldsmith, “Capacity regions for wireless ad hoc networks,” International Symposium on Communication Theory and Applications, 2001

    Google Scholar 

  23. S. Toumpis and A.J. Goldsmith, “Capacity Regions for Wireless Ad Hoc Networks,” To appear in the IEEE Transactions on Wireless Communications, 2003.

    Google Scholar 

  24. L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and resource allocation via dual decomposition,” Proceedings of 4th Asian Control Conference, September 25–27, 2002.

    Google Scholar 

  25. M. Johansson, L. Xiao and S. Boyd, “Simultaneous routing and resource allocation in CDMA wireless data networks,” IEEE International Conference on Communications, Anchorage, Alaska, May 2003.

    Google Scholar 

  26. J. Chang and L. Tassiulas. “Energy Conserving Routing in Wireless Ad Hoc Networks,” IEEE lnfocom 2000.

    Google Scholar 

  27. M. Bhardwaj and A.P. Chandrakasan, “Bounding the Lifetime of Sensor Networks Via Optimal Role Assignments”, Proceedings of INFOCOM 2002, pp. 1587–1596, New York, June 2002.

    Google Scholar 

  28. K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum Lifetime Data Gathering and Aggregation in Wireless Sensor Networks,” In the Proceedings of the 2002 IEEE International Conference on Networking (ICN’02), Atlanta, Georgia, August 26–29, 2002.

    Google Scholar 

  29. B. Krishnamachari and F. Ordóñez, “Analysis of Energy-Efficient, Fair Routing in Wireless Sensor Networks through Non-linear Optimization,” Workshop on Wireless Ad hoc, Sensol; and Wearable Networks, in IEEE Vehicular Technology Conference-Fall, Orlando, Florida, October 2003.

    Google Scholar 

  30. B. Krishnamachari and E Ordbfiez, “Optimal Information Extraction in Energy-Limited Wireless Sensor Networks,” unpublished manuscript, June 2003. Available online at <http://ceng.usc.edu/Nbkrishna>.

    Google Scholar 

  31. N. Garg, J. Konemann, “Faster and Simpler Algorithms for Multicommodity Flow and Other Fractional Packing Problems,” FOCS 1998.

    Google Scholar 

  32. J. H. Chang and L. Tassiulas, “Fast Approximate Algorithm for Maximum Lifetime Routing in Wireless Ad-hoc Networks,” Networking 2000, vol. 1815 of Lecture Notes in Computer Science, pp. 702–713, Paris, France, May 2000.

    Google Scholar 

  33. N. Sadagopan and B. Krishnamachari, “Maximizing Data Extraction in Energy-Limited Sensor Networks,” unpublished manuscript, June 2003. Available online at <http://ceng.usc.edu/∼bkrishna>.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Krishnamachari, B., Ordóñez, F. (2004). Fundamental Limits of Networked Sensing. In: Raghavendra, C.S., Sivalingam, K.M., Znati, T. (eds) Wireless Sensor Networks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7884-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7884-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-35269-5

  • Online ISBN: 978-1-4020-7884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics