Skip to main content

Plums

  • Chapter

Abstract

Most of the plums grown commercially are either the hexaploid, Prunus domestica (European) or the diploid, P. salicina (Asian or Japanese). Common goals of European plum breeders are cold hardiness, modest tree size, self fertility and productivity. Some of the key abiotic problems confronting Japanese plum production are susceptibility to spring frosts, insufficient winter hardiness and limited soil adaptations. Fruit quality and disease resistance are important goals in all plum breeding projects. The genetics of only a few traits have been investigated in plum; however, significant progress has been made in identifying horticulturally useful germplasm. A Myrobalan plum clone was crossed with an almond-peach hybrid to generate a microsatellite genetic linkage map and a resistance gene to the root knot nematode (Ma) was identified. A transgenic European plum clone was produced that carries the plum pox virus coat protein gene (PPV-CP) and has strong resistance to all four major serotypes of PPV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrechtova L, Karesova R, Pluhar Z (1989) Evaluation of resistance of plum cultivars and hybrids to plum pox virus (in German). Z Pflanzenkr Pflanzenschutz 96:455–463

    Google Scholar 

  • Alderman WH, Weir TS (1951) Pollination studies with stone fruits. Minn Agr Expt Sta Tech Bull, 198:1–16

    Google Scholar 

  • Andersen ET, Weir TS (1967) Prunus hybrids, selections and cultivars at the University of Minnesota Fruit Breeding Farm. Minn Agr Expt Sta Tech Bull, 252:1–49

    Google Scholar 

  • Atkinson JD (1971) Diseases of tree fruits in New Zealand. AR Shearer, Govt. Printer, Wellington, New Zealand

    Google Scholar 

  • Casas AM, Igartua E, Balaguer G, Moreno MA (1999) Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica 110:139–149

    Article  CAS  Google Scholar 

  • Claverie M, Bosselut N, Voisin R, Esmenjaud D, Chalhoub B, Direwanger E, Kleinhentz M, Laigret F (2004) High resolution map of the Ma gene for resistance to root-knot nematodes in myrobaslan plum (Prunus cerasifera). Acta Hortic 663:69–74

    CAS  Google Scholar 

  • Couranjou J (1989) A second cultivar factor of biennial bearing in Prunus domestica L: the sensitivity of flower bud formation to fruit load. Sci Hortic 40:189–201

    Article  Google Scholar 

  • Crane MB, Lawrence WJC (1956) The genetics of garden plants (4th ed). London, Macmillan

    Google Scholar 

  • Dirlewanger E, Cosson P, Howard W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargure B, Baron O, Laigret F, Kleinhentz M, Arús P, Esmenjaud D (2004b) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid – location of root-knot nematode resistance genes. Theor Appl Genet 109:827–838

    Article  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howard W, Arús P (2004a) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  CAS  Google Scholar 

  • Flory WS (1947) Crossing relationships among hybrid and specific plum varieties, and among several Prunus species which are involved. Am J Bot 34:330–335

    Article  Google Scholar 

  • Hansche PE, Hesse CO, Beres V (1975) Inheritance of fruit size, soluble solids and ripening date in Prunus domestica cv. Agen. J Am Soc Hortic Sci 100:522–524

    Google Scholar 

  • Hartmann W (ed) (1994) Fifth international symposium on plum and prune genetics, breeding and pomology. Acta Hortic 359:1–295

    Google Scholar 

  • Hurter N (1962) Inheritance of flesh color in the fruit of the Japanese plum Prunus salicina. S Afr J Agric Sci 5:673–674

    Google Scholar 

  • Mante S, Morgens P, Scorza R, Cordts JM, Callahan A (1991) Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyls slices and regeneration of transgenic plants. Biotechnology 9:853–857

    Article  CAS  Google Scholar 

  • Mante S, Scorza R, Corts JM (1989) Plant regeneration from cotyledons of Prunus persica, Prunus domestica and Prunus cerasus. Plant Cell Tissue Organ Cult 19:1–11

    Article  CAS  Google Scholar 

  • Messina R, Lain O, Marrazzo MT, Huang WG, Cipriani G, Testolin R (2004) Isolation of microsatellites from almond and apricot genomic libraries and testing for their transportability. Acta Hortic 663:79–82

    CAS  Google Scholar 

  • Murawski H (1959) Contributions to breeding research on plums. II. Further investigations on the breeding value of seedlings (in German). Zuchter 29:21–36

    Article  Google Scholar 

  • Norton JD, Boyhan GE (1991) Inheritance of resistance to black knot in plums. HortScience 26:1540

    Google Scholar 

  • Norton JD, Boyhan GE, Smith DA, Abrahams BR (1991) AU-Cherry plum. HortScience 26:1091–1092

    Google Scholar 

  • Novak B, Miczynski K (1996) Regeneration capacity of Prunus domestica L. cv. Wegierka Zwykla from leaf explants of in vitro shoots using TDZ. Folia Hortic 8:41–49

    Google Scholar 

  • Okie WR (1987) Plum Rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, New York

    Google Scholar 

  • Okie WR, Ramming DW (1999) Plum breeding worldwide. HortTechnology 9:162–176

    Google Scholar 

  • Okie WR, Thompson JM, Reilly CC (1992) Segundo, Byrongold and Rubysweet plums and BY69-1637P plumcot: Fruits for the Southeastern United Sates. Fruit Varieties J 46:102–107

    Google Scholar 

  • Okie WR, Weinberger JH (1996) Plums. In: Janick J, Moore JN (eds) Fruit Breeding, vol. 1. Tree and tropical fruits. John Wiley and Sons, Inc., NewYork

    Google Scholar 

  • Olden EJ (1965) Interspecific plum crosses. Research Report 1. Balsgard Fruit Breeding Institute. Fjalkestad, Sweden

    Google Scholar 

  • Ortiz A, Renaud R, Calzeda I, Ritter E (1997) Analysis of plum cultivars with RAPD markers. J Hortic Sci 72:1–9

    Article  CAS  Google Scholar 

  • Paunovic AS (1988) Plum genotypes and their improvement in Yugoslavia. Fruit Varieties J 42:143–151

    Google Scholar 

  • Popenoe J (1959) Relation of heredity to incidence of bacterial spot on plum varieties in Alabama. Proc. Assoc. So. Agric. Workers 56th Annu Conv Memphis 1959:176–177

    Google Scholar 

  • Quamme HA, Layne REC, Ronald WG (1982) Relationship of supercooling to cold hardiness and the northern distribution of several cultivated and native Prunus species and hybrids. Can J Plant Sci 62:137–148

    Article  Google Scholar 

  • Ramming DW, Cociu V (1991) Plums In: Moore JN, Ballington, JR (eds) Genetic resources of temperate fruit and nut crops. Acta Hortic 290(1):233–287

    Google Scholar 

  • Ravelonandro M, Briard P, Monsion M, Scorza R (2002) Stable transfer of the plum pox virus (PPV) capsid transgene to seedlings of two French cultivars ‘Prunier D’Ente 303’ and ‘Quetsche 2906’ and preliminary results of PPV challenge assays. Acta Hortic 577:91–96

    CAS  Google Scholar 

  • Ravelonandro M, Scorza R, Bachelier JC, Labonne G, Levy L, Damsteegt V, Callahan A, Dunez J (1997) Resistance of transgenic Prunus domestica to plum pox virus infection. Plant Dis 81:1231–1235

    Article  CAS  Google Scholar 

  • Ravelonandro M, Scorza R, Renaud R, Salesses G (1998) Transgenic plums resistant to plum pox virus infection and preliminary results of cross-hybridization. Acta Hortic 478:67–71

    Google Scholar 

  • Renaud R (1975) The study of inheritance in the plum intraspecific cross-breeding (in French). Acta Hortic 48:79–82

    Google Scholar 

  • Reynders-Aloisi S, Grellet E (1994) Characterization of the ribosomal DNA units in two related Prunus species (P. Cerasifera and P. Spinosa). Plant Cell Reports 13:641–646

    Google Scholar 

  • Roach FA (1985) Cultivated fruits of Britain: Their origin and history. Basil Blackwell, New York

    Google Scholar 

  • Scorza R, Callahan AM, Levy L, Damsteegt V, Ravelonandro M (1998) Transferring potyvirus coat protein genes through hybridization of transgenic plants to produce plum pox virus resistant plums (Prunus domestica L.). Acta Hortic 472:421–427

    CAS  Google Scholar 

  • Scorza R, Callahan A, Levy L, Damsteegt V, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res 10:201–209

    Article  PubMed  CAS  Google Scholar 

  • Scorza R, Levy L, Damsteegt V, Yepes LM, Cordts JM, Hadidi A, Gonsalvez D (1995) Transformation of plum with the papaya ringspot virus coat protein gene and reaction of transgenic plants to plum pox virus. J Am Soc Hortic Sci 120:943–952

    Google Scholar 

  • Scorza R, Ravelonandro M, Callahan A, Cordts JM, Fuchs M, Dunez J, Gonsalvez D (1994) Transgenic plums (Prunus domestica) express the plum pox virus coat protein gene. Plant Cell Rep 14:18–22

    Article  CAS  Google Scholar 

  • Scorza R, Ravelonandro M, Malinowski T, Minoliu N, Cambra M (2003) Potential use of trasgenic plums resistant to plum pox virus field infection. Acta Hortic 622:119–122

    Google Scholar 

  • Sutherland BG, Tobutt KR, Robbins TP (2004) Molecular genetics of self-incompatibility in plums. Acta Hortic 663:557–562

    CAS  Google Scholar 

  • Tehrani G (1990) Seventy-five years of plum breeding and pollen compatibility studies in Ontario. Acta Hortic 283:95–103

    Google Scholar 

  • Vitanov M (1972) Inheritance of some traits and properties of fruits from the hybridization of plum varieties of Prunus domestica L.II. Time of ripening, stone adherence to flesh, fruit skin and flesh colour, correlations (in Bulgarian). Gen Syst 5:341–356

    Google Scholar 

  • Weinberger JH, Thompson LA (1962) Inheritance of certain fruit and leaf characters in Japanese plums. Proc Am Soc Hortic Sci 81:172–179

    Google Scholar 

  • Werner DJ, Mowrey BD, Young E (1988) Chilling requirements and post-rest heat accumulation as related to difference in time of bloom between peach and Western sand cherry. J. Amer. Soc. Hort. Sci. 113:775–778

    Google Scholar 

  • Wilson D, Jones RP, Reeves J (1975) Selection for prolonged winter dormancy as a possible aid to improving yield stability in European plum (Prunus domestica L.). Euphytica 24:815–819

    Google Scholar 

  • Yamaguchi M, Kyotani H (1986) Differences in fruit ripening patterns of Japanese plum cultivars under high (30°C) and medium (20°C) temperature storage. Bull Fruit Tree Res Sta A13:1–19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Okie, W., Hancock, J. (2008). Plums. In: Hancock, J.F. (eds) Temperate Fruit Crop Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6907-9_11

Download citation

Publish with us

Policies and ethics