Skip to main content

Advanced Capabilities for the Simulation of Membrane and Inflatable Space Structures Using SAMCEF

  • Chapter
  • 1586 Accesses

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 8))

Abstract

SAMCEF Mecano is a general implicit non-linear software developed by Samtech. The paper describes several improvements that have been made in SAMCEF Mecano concerning the analysis of inflatable and membrane structures. Most of these developments have been carried out in the frame of an ESTEC contract (PASTISS project). Several examples illustrate the different developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SAMCEF: Système d’Analyse desMilieux Continus par Eléments Finis. Samtech, Liège, Belgium, www.samcef.com.

    Google Scholar 

  2. Jetteur P, Granville D (2004) Finite element analysis of inflatable space structures using SAMCEF. In Proceedings Second European Workshop on Inflatable Space Structures, Tivoli, Italy, June 21–23.

    Google Scholar 

  3. Jetteur P, Granville D (2004) Presentation of the PASTISS project. Second European Workshop on Inflatable Space Structures, June 21–23, Tivoli, Italy

    Google Scholar 

  4. Bruyneel M, Jetteur P, Granville D (2005) First results of the PASTISS project — Professional Analysis Software Tool for Inflatable Space Structures. In Proceedings European Conference of Space Structures, Materials and Mechanical Testing, ESA/ESTEC, Noordwijk, The Netherlands, May 10–12.

    Google Scholar 

  5. Guo YQ, Batoz JL, Naceur H, Gati W (2000) Two simple triangular shell elements for spring back simulation after deep drawing of thin sheets. Finite elements: Techniques and developments. In Proceedings of the 5th International Conference on Computational Structures Technology, Leuven.

    Google Scholar 

  6. Flores FG, Oñate E (2005) Improvements in the membrane beahavior of the three node rotation-free BST shell triangle using an assumed strain approach. Computational Methods in Applied Mechanics and Engineering 194:907–993.

    Article  MATH  Google Scholar 

  7. Jetteur Ph (2003) Thin membrane element for inflatable structures. In Oñate E, Kröplin B (Eds), Textile Composites and Inflatable Structures, Structural Membranes 2003. CIMNE, Barcelona.

    Google Scholar 

  8. Bouzidi R, Le van A (2004) Numerical solution of hyperelastic membranes by energy minimization. Computers & Structures 82:1961–1969.

    Article  Google Scholar 

  9. Troufflard J, Cadou J-M, Rio G (2005) Numerical and experimental study of inflatable lifejackets. In Oñate E, Kröplin B (Eds), Textile Composites and Inflatable Structures, Structural Membranes 2005. CIMNE, Barcelona.

    Google Scholar 

  10. Bruyneel M, Jetteur P, Granville D, Langlois S, Fleury C (2005) An augmented Lagrangian optimization method for inflatable structures analysis problems. Structural & Multidisciplinary Optimization 32:383–395.

    Article  MathSciNet  Google Scholar 

  11. Bruyneel M, Jetteur P (2005) An optimization approach for inflation process simulation. In Oñate E, Kröplin B (Eds), Textile Composites and Inflatable Structures, Structural Membranes 2005. CIMNE, Barcelona.

    Google Scholar 

  12. Schmit LA, Fleury C (1980) Structural synthesis by combining approximation concepts and dual method. AIAA Journal 18:1252–1260.

    Article  MATH  MathSciNet  Google Scholar 

  13. Bruyneel M, Duysinx P, Fleury C (2002) A family of MMA approximations for structural optimisation. Structural & Multidisciplinary Optimization 24:263–276.

    Article  Google Scholar 

  14. Gill PE, Murray W, Wright MH (1981) Practical Optimization, Academic Press.

    Google Scholar 

  15. Nocedal J, Wright SJ (1999) Numerical Optimization, Springer Series in Operations Research, Springer

    Google Scholar 

  16. Bonnans JF, Gilbert JC, Lemaréchal C, Sagastizabal CA (2003) Numerical Optimization: Theoretical and Practical Aspects, Springer.

    Google Scholar 

  17. Morris AJ (1982) Foundations of Structural Optimization: A Unified Approach, John Wiley & Sons.

    Google Scholar 

  18. Riks E, Rankin C, Brogan F (1996) On the solution of mode jumping phenomena in thin walled shell structures. Computational Methods in Applied Mechanics and Engineering 136:59–92.

    Article  MATH  MathSciNet  Google Scholar 

  19. Wong YW, Pellegrino S (2002) Computation of wrinkle amplitudes in thin membranes. In Proceedings 43th AIAA Structures, Structural Dynamics and Material Conference, Denver, CO.

    Google Scholar 

  20. Jetteur Ph (2005) Material with small resistance in compression, dual formulation. In Oñate E, Kröplin B (Eds), Textile Composites and Inflatable Structures, Structural Membranes 2005. CIMNE, Barcelona.

    Google Scholar 

  21. LS DYNA User’s Manual.

    Google Scholar 

  22. Liénard S (2002) Modeling and testing of large stretched thin film membrane structures applied to the next generation space telescope sunshield. In Proceedings European Conference on Spacecraft Structures, Materials and Mechanical Testing, Toulouse, France, December 10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Jetteur, P., Bruyneel, M. (2008). Advanced Capabilities for the Simulation of Membrane and Inflatable Space Structures Using SAMCEF. In: Oñate, E., Kröplin, B. (eds) Textile Composites and Inflatable Structures II. Computational Methods in Applied Sciences, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6856-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6856-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6855-3

  • Online ISBN: 978-1-4020-6856-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics