Skip to main content

Fatigue Crack Growth. Analysis and Predictions

  • Chapter
Fatigue of Structures and Materials

In Chapter 2 the fatigue life until failure has been divided into two periods: (i) the crack initiation period, and (ii) crack growth period. Crack nucleation and microcrack growth in the first period are primarily phenomena occurring at the material surface. The second period starts when the fatigue crack penetrates into the subsurface material away from the material surface. The growth of the fatigue crack is then depending of the crack growth resistance of the material as a bulk property. The two previous chapters, Chapters 6 and 7, mainly deal with fatigue in the crack initiation period. The subject of the present chapter is fatigue crack growth in the second period. It could also be referred to as the growth of macro fatigue cracks.

Under which conditions is crack growth in the second period of practical interest? Obviously, the load spectrum should contain stress cycles above the fatigue limit in order to have a fatigue crack problem. Secondly, some macrocrack growth must be acceptable, but it should then be known how fast crack growth occurs. Two well-known examples are:

  1. (i)

    Crack growth in sheet material where the crack is growing through the full thickness of the material. An obvious example is fatigue crack growth in aircraft skin structures.

  2. (ii)

    A second example is the growth of part through cracks, see Figure 5.3 where a corner crack or a surface crack starts at a hole. Part through cracks also occur as surface cracks in welded structures at the toe of a weld. In many practical cases, part through cracks are associated with massive components and thick plate structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Standard test method for measurement of fatigue crack growth rates. ASTM Standard E64791 (1991).

    Google Scholar 

  2. Paris, P.C., Gomez, M.P. and Anderson, W.E., A rational analytical theory of fatigue. The Trend of Engineering, Vol. 13 (1961), pp. 9–14.

    Google Scholar 

  3. Schijve, J., Fatigue crack propagation and the stress intensity factor. Faculty of Aerospace Engineering, Delft, Memorandum M-191 (1973).

    Google Scholar 

  4. Figge, I.E. and Newman, Jr, J.C., Fatigue-crack-propagation behavior in panels with simulated rivet forces. NASA TN D-4702 (1968).

    Google Scholar 

  5. Schijve, J., Significance of fatigue cracks in micro-range and macro-range. ASTM-STP 415, (1967) pp. 415–459.

    Google Scholar 

  6. Wanhill, R.J.H., Durability analysis using short and long fatigue crak growth data. Aircraft Damage Assessment and Repair. The Institution of Engineering, Australia (1991). Barton, Australia.

    Google Scholar 

  7. Paris, P.C. and Erdogan, F., A critical analysis of crack propagation laws. Trans. ASME, Series D, Vol. 85 (1963), pp. 528–535.

    Google Scholar 

  8. Forman, R.G., Kearney, V.E. and Engle, R.M., Numerical analysis of crack propagation in cyclic-loaded structures. J. Basic Engrg., Trans. ASME, Vol. D89 (1967), pp. 459–464.

    Google Scholar 

  9. Priddle, E.K., High cycle fatigue crack propagation under random and constant amplitude loadings. Int. J. Pressure Vessels & Piping, Vol. 4 (1976), p. 89.

    Article  Google Scholar 

  10. Klesnil, M. and Lukáš, P., Influence of strength and stress history on growth and stabilization of fatigue cracks. Engrg. Fracture Mech., Vol. 4 (1972), pp. 77–92.

    Article  Google Scholar 

  11. Elber, W., The significance of fatigue crack closure. Damage tolerance in aircraft structures. ASTM STP 486 (1971), pp. 230–242.

    Google Scholar 

  12. Rice, J.R., The mechanics of crack tip deformation and extension by fatigue. Fatigue crack propagation. ASTM STP 415 (1967), pp. 247–309.

    Google Scholar 

  13. Schijve, J., Some formulas for the crack opening stress level. Engrg. Fracture Mechanics, Vol. 14 (1981), pp. 461–465.

    Article  Google Scholar 

  14. Van der Linden, H.H., NLR test results as a database to be used in a check of crack propagation prediction models. A Garteur activity. Nat. Aerospace Lab. NLR, TR 79121U, Amsterdam (1979).

    Google Scholar 

  15. Schijve, J., Fatigue crack closure observations and technical significance. Mechanics of Fatigue Crack Closure, Int. Symp., Charleston 1986. ASTM STP 982 (1988), pp. 5–34.

    Google Scholar 

  16. Ewalds, H.L. and Furnee, R.T., Crack closure measurements along the crack front in center cracked specimens. Int. J. Fracture, Vol. 14 (1978), pp. R53–R55.

    Google Scholar 

  17. Sunder, R. and Dash, P.K., Measurement of fatigue crack closure through electron microscopy. Int. J. Fatigue, Vol. 4 (1982), pp. 97–105.

    Article  Google Scholar 

  18. Ritchie, R.O., Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Mater. Sci. Engrg., Vol. A103 (1988), pp. 15–28.

    Article  Google Scholar 

  19. Broek, D. and Schijve, J., The influence of the mean stress on the propagation of fatigue cracks in aluminium alloy sheet. Nat. Aerospace Lab. NLR, Report TR M.2111, Amsterdam (1963).

    Google Scholar 

  20. Crooker, T.W., The role of fracture toughness in low-cycle fatigue crack propagation for high-strength alloys. Engrg. Fracture Mech., Vol. 5 (1973), pp. 35–43.

    Article  Google Scholar 

  21. Stephens, R.R., Stephens, R.I., Veit, A.L. and Albertson, T.P., Fatigue crack growth of Ti-62222 alloy under constant amplitude and mini-TWIST flight spectra at 25°C and 175°C. Int. J. Fatigue, Vol. 19 (1997), pp. 301–308.

    Article  Google Scholar 

  22. Houdijk, P.A., Effect of specimen thickness and specimen geometry on fatigue crack growth in Fe510Nb. Faculty of Chemistry and Materials, Delft University of Technology (1993) [in Dutch].

    Google Scholar 

  23. Song-Hee Kim and Weon-Pil Tai, Retardation and arrest of fatigue crack growth in AISI 4340 steel by introducing rest periods and overloads. Fatigue Fracture Engrg. Mater. Structure, Vol. 15 (1992), pp. 519–530.

    Article  Google Scholar 

  24. Liaw, P.K., Peck, M.G. and Rudd, G.E., Fatigue crack growth behavior of D6AC space shuttle steel. Engrg. Fracture Mech., Vol. 43 (1992), pp. 379–400.

    Article  Google Scholar 

  25. Newman, J.C., Jr. and Raju, I.S., Stress-intensity factor equation for crack in three-dimensional finite bodies subjected to tension and bending loads. Fracture Mechanics, ASTM STP 791, Vol. 1 (1983), pp. 238–265.

    Google Scholar 

  26. Petrak, G.S., Strength level effects on fatigue crack growth and retardation. Engrg. Fracture Mech., Vol. 6 (1974), pp. 725–733.

    Article  Google Scholar 

  27. Schijve, J. and De Rijk, P., The fatigue crack propagation in 2024-T3 Alclad sheet materials from seven different manufacturers. Nat. Aerospace Lab. NLR, Report TR M.2162, Amsterdam (1966).

    Google Scholar 

  28. Yoder, G.R., Cooley, L.A. and Crooker, T.W., The effect of load ratio on fatigue crack growth in Ti-8Al-1Mo-1V. Engrg. Fracture Mech., Vol. 17 (1983), pp. 185–188.

    Article  Google Scholar 

  29. Kage, M., Miller, K.J. and Smith, R.A., Fatigue crack initiation and propagation in a low-carbon steel of two different grain sizes. Fatigue Fracture Engrg. Mater. Structure, Vol. 15 (1992), pp. 763–774.

    Article  Google Scholar 

  30. Wanhill, R.J.H., Low stress intensity fatigue crack growth in 2024-T3 and T351. Engr. Fracture Mech., Vol. 30 (1988), pp. 233–260.

    Article  Google Scholar 

  31. Stubbington, C.A. and Gunn, N.J.F., Effects of fatigue crack front geometry and crystallography on the fracture toughness of an Ti-6Al-4V alloy. Roy. Aero. Est., TR 77158, Farnborough (1977).

    Google Scholar 

  32. Pearson, S., Initiation of fatigue cracks in commercial aluminium alloys and the subsequent propagation of very short cracks. Engrg. Fracture Mech., Vol. 7 (1975), pp. 235–247.

    Article  Google Scholar 

  33. Schijve, J. and Hoeymakers, A.H.W., Fatigue crack growth in lugs and the stress intensity factor. Fatigue Engrg. Mater. Structures, Vol. 1 (1979), pp. 185–201.

    Article  Google Scholar 

  34. Poe, Jr., C.C., Fatigue crack propagation in stiffened panels. Damage tolerance in aircraft structures, ASTM STP 486 (1971), pp. 79–97.

    Google Scholar 

  35. Ichsan, S. Putra and Schijve, J., Crack opening stress measurements of surface cracks in 7075-T6 Al alloy plate specimens through electron fractography. Fatigue Fracture. Engrg. Mater. Structures, Vol. 15 (1992), pp. 323–338.

    Article  Google Scholar 

  36. Lin, X.B. and Smith, R.A., Fatigue shape analysis for corner cracks at fastener holes. Engrg. Fracture Mech., Vol. 59 (1998), pp. 73–87.

    Article  Google Scholar 

  37. Broek, D., The Practical Use of Fracture Mechanics. Kluwer Academic Publishers (1988).

    Google Scholar 

  38. Fawaz, S.A., Fatigue Crack Growth in Riveted Joints. Doctor Thesis, Delft University of Technology (1997).

    Google Scholar 

  39. Fawaz, S.A. and Andersson, B., Accurate stress intensity factor solutions for corner cracks at a hole. Engrg. Fracture Mech., Vol. 71 (2004), pp. 1235–1254.

    Article  Google Scholar 

  40. Newman, J.C., Jr. and Raju, I.S., Stress-intensity factor equation for crack in three-dimensional finite bodies subjected to tension and bending loads. Fracture Mechanics, ASTM STP 791, Vol. 1 (1983), pp. 238–265.

    Google Scholar 

  41. Harter, J.A., AFGROW Users Guide and Technical Manual, AFGROW version 4.0012.15, AFRL-VA-WP-TR-2007 (2007).

    Google Scholar 

  42. Wang, S.-H. and Müller, C., A study on the change of fatigue fracture mode in two titanium alloys. Fatigue Fracture Engrg. Mater. Structure, Vol. 21 (1998), pp. 1077–1087.

    Article  Google Scholar 

  43. De Freitas, M. and Francois, D., Analysis of fatigue crack growth in rotary bend specimens and railway axles. Fatigue Fracture Engrg. Mater. Structure, Vol. 18 (1995), pp. 171–178.

    Article  Google Scholar 

  44. Carpinteri, A., Handbook of Fatigue Crack Propagation in Metallic Structures. Elsevier, Amsterdam (1994).

    Google Scholar 

  45. Blom, A.F. and Beevers, C.J. (Eds.), Theoretical Concepts and Numerical Analysis of Fatigue. Proc. Conf. May 1992, Birmingham. EMAS (1992).

    Google Scholar 

  46. Anderson, T.L., Fracture Mechanics: Fundamentals and Applications. CRC Press (1991).

    Google Scholar 

  47. Reuter, W., Underwood, J.H. and Newman, Jr., J.C. (Eds.), Surface-crack growth: Models, experiments, and structures. ASTM STP 1060 (1990).

    Google Scholar 

  48. Brown, M.W. and Miller, K.J. (Eds.), Biaxial and Multiaxial Fatigue. EGF Publication 3. Mechanical Engineering Publications (1989).

    Google Scholar 

  49. Newman, Jr., J.C. and Elber, W. (Eds.), Mechanics of Fatigue Crack Closure. ASTM STP 982 (1988).

    Google Scholar 

  50. Miller, K.J. and Brown, M.W. (Eds.), Multiaxial Fatigue. ASTM STP 853 (1985).

    Google Scholar 

  51. Pook, L.P., The Role of Crack Growth in Metal Fatigue. The Metals Society, London (1983).

    Google Scholar 

  52. ESDU Engineering Science Data. Fatigue-Fracture Mechanics Data. Vol. 2 (aluminium alloys) and Vol. 3 (Titanium alloys and steels). (1981–1999).

    Google Scholar 

  53. Fatigue Crack Propagation, ASTM STP 415 (1967).

    Google Scholar 

  54. Hudson, C.M. and Seward, S.K., A compendium of sources of fracture toughness and fatigue crack growth data for metallic alloys. Parts I, II and III. Int. J. Fracture, Vol. 14 (1978) pp. R151–R184, Vol. 20 (1982) pp. R59–R117, Vol. 39 (1989) pp. R43–R63.

    Article  Google Scholar 

  55. McClung, R.C., The influence of applied stress, crack length, and stress intensity factor on crack closure. Metallurgical Trans., Vol. 22a (1991), pp. 1559–1571.

    Article  Google Scholar 

  56. Wanhill, R.J.H., Microstructural influences on fatigue and fracture resistance in high strength structural materials. Engrg. Fracture Mech., Vol. 10 (1978), pp. 337–357.

    Article  Google Scholar 

  57. Short Crack Growth Behaviour in Various Aircraft Materials, AGARD Report No. 767 (1990).

    Google Scholar 

  58. Schijve, J., Difference between the growth of small and large fatigue cracks. The relation to threshold K-values. Fatigue Thresholds, Fundamentals and Engineering Applications. Proc. Int. Conf. Stockholm 1981. EMAS Warley (1982), pp. 881–908.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Fatigue Crack Growth. Analysis and Predictions. In: Schijve, J. (eds) Fatigue of Structures and Materials. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6808-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6808-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6807-2

  • Online ISBN: 978-1-4020-6808-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics