Skip to main content

Genetic Instability and Cancer

  • Chapter

When a cell divides, its genome is first duplicated and then distributed to each daughter cell. Every aspect of this fundamental biological process is tightly controlled, ensuring that the information encoded in the genomic DNA does not significantly change as it passes from generation to generation. A full complement of chromosomes is inherited in structurally intact form. The process of DNA replication is similarly characterized by an extraordinarily high degree of fidelity. During the proliferation of normal cells, heritable genetic changes occur only rarely. The information content of the genome in the cells that compose normal tissues is highly stable over the lifetime of the individual.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, M. & Rahman, N. ATM and breast cancer susceptibility. Oncogene 25, 5906–5911 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Andressoo, J. O., Hoeijmakers, J. H. & Mitchell, J. R. Nucleotide excision repair disorders and the balance between cancer and aging. Cell. Cycle 5, 2886–2888 (2006).

    PubMed  CAS  Google Scholar 

  • Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Cleaver, J. E. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat. Rev. Cancer 5, 564–573 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Duesberg, P. Does aneuploidy or mutation start cancer? Science 307, 41 (2005).

    Article  PubMed  CAS  Google Scholar 

  • de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    Article  PubMed  Google Scholar 

  • Ellis, N. A. Mutation-causing mutations. Nature 381, 110–111 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ellis, N. A. & German, J. Molecular genetics of Bloom's syndrome. Hum. Mol. Genet. 5, 1457–1463 (1996).

    PubMed  CAS  Google Scholar 

  • Fearon, E. R. Human cancer syndromes: Clues to the origin and nature of cancer. Science 278, 1043–1050 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gatti, R. A. The inherited basis of human radiosensitivity. Acta Oncol. 40, 702–711 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Gurtan, A. M. & D'Andrea, A. D. Dedicated to the core: Understanding the Fanconi anemia complex. DNA Repair 5, 1119–1125 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Joenje, H. & Patel, K. J. The emerging genetic and molecular basis of Fanconi anaemia. Nat. Rev. Genet. 2, 446–457 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kastan, M. B. & Lim, D. S. The many substrates and functions of ATM. Nat. Rev. Mol. Cell Biol. 1, 179–86. (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kipling, D., Davis, T., Ostler, E. L. & Faragher, R. G. What can progeroid syndromes tell us about human aging? Science 305, 1426–1431 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–69. (1998).

    Article  PubMed  CAS  Google Scholar 

  • Margolis, R. L. Tetraploidy and tumor development. Cancer Cell 8, 353–354 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Michor, F., Iwasa, Y., Vogelstein, B., Lengauer, C. & Nowak, M. A. Can chromosomal instability initiate tumorigenesis? Semin. Cancer Biol. 15, 43–49 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Modrich, P. Mismatch repair, genetic stability, and cancer. Science 266, 1959–1960 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Mohaghegh, P. & Hickson, I. D. DNA helicase deficiencies associated with cancer predisposition and premature ageing disorders. Hum. Mol. Genet. 10, 741–746 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature 432, 338–341 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan, H., Nowak, M. A., Vogelstein, B. & Lengauer, C. The significance of unstable chromosomes in colorectal cancer. Nat. Rev. Cancer 3, 695–701 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Shiloh, Y. The ATM-mediated DNA-damage response: Taking shape. Trends Biochem. Sci. 31, 402–410 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: Ensuring that the tail does not wag the dog. Nat. Med. 5, 11–12 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

(2008). Genetic Instability and Cancer. In: Principles of Cancer Genetics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6784-6_4

Download citation

Publish with us

Policies and ethics