Skip to main content

Hypoxia and Retinal Neovascularization

  • Chapter
Retinal and Choroidal Angiogenesis

Abstract

For over 50 years, retinal hypoxia has been considered to be a major causative factor in the development of retinal neovascularization (NV), a condition associated with blindness and vision loss in a variety of retinopathies. Review of the existing literature and results of new experiments from our laboratory strongly suggest that the oxygen-based pathophysiology stimulating retinal NV is more complicated than previously thought. Our evidence identifies at least two independent conditions involved in the pathogenesis of retinal NV: hypoxia measured under steady-state conditions (i.e., static hypoxia) and found at the border of vascular and avascular retina, and subnormal oxygenation response measured during a provocation and found over both vascular and avascular retina. In practical terms, the identification of links between static hypoxia, oxygen supply dysfunction and NV may lead to improved therapeutic strategies for preventing vision loss and blindness from retinal NV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. D. Wangsa-Wirawan and R. A. Linsenmeier, Retinal oxygen: fundamental and clinical aspects, Arch. Ophthalmol. 121 (4), 547-557 (2003).

    Article  PubMed  Google Scholar 

  2. I. C. Michaelson, The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases, Trans. Ophthal. Soc. UK. 68, 137-186 (1948).

    Google Scholar 

  3. N. Ashton, Neovascularization in ocular disease, Trans. Ophthal. Soc. UK. 81, 145-161 (1961).

    PubMed  CAS  Google Scholar 

  4. T. Chan-Ling, B. Gock, and J. Stone, The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis, Invest. Ophthalmol. Vis. Sci. 36 (7), 1201-1214 (1995).

    PubMed  CAS  Google Scholar 

  5. D. L. Phelps, Reduced severity of oxygen-induced retinopathy in kittens recovered in 28% oxygen, Pediatr. Res. 24 (1), 106-109 (1988).

    Google Scholar 

  6. C. L. Tailoi, B. Gock, and J. Stone, Supplemental oxygen therapy. Basis for noninvasive treatment of retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci. 36 (7), 1215-1230 (Jun 1995).

    Google Scholar 

  7. B. A. Berkowitz and W. Zhang, Significant reduction of the panretinal oxygenation response after 28% supplemental oxygen recovery in experimental ROP, Invest. Ophthalmol. Vis. Sci. 41 (7), 1925-1931 (2000).

    PubMed  CAS  Google Scholar 

  8. Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes, Pediatrics 105 (2), 295-310 (2000).

    Article  Google Scholar 

  9. The STOP-ROP Multicenter Study Group, Supplemental therapeutic oxygen for prethreshhold retinopathy of prematurity (STOP-ROP), a randomized, controlled trial. I. Primary outcomes, Pediatrics 105 (2) 295-310 (2000).

    Google Scholar 

  10. B. A. Berkowitz, E. S. Berlin, and W. Zhang, Variable supplemental oxygen during recovery does not reduce retinal neovascular severity in experimental ROP, Curr. Eye Res. 22 (6), 401-404 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. C. Takagi, G. L. King, H. Takagi, Y. W. Lin, A. C. Clermont, and S. E. Bursell, Endothelin-1 action via endothelin receptors is a primary mechanism modulating retinal circulatory response to hyperoxia, Invest. Ophthalmol. Vis. Sci. 37 (10), 2099-2109 (1996).

    PubMed  CAS  Google Scholar 

  12. E. Stefansson, The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology, Acta. Ophthalmol. Scand. 79 (5), 435-440 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. E. Stefansson, D. L. Hatchell, B. L. Fisher, F. S. Sutherland, and R. Machemer, Panretinal photocoagulation and retinal oxygenation in normal and diabetic cats, Am. J. Ophthalmol. 101 (6), 657-664 (1986).

    PubMed  CAS  Google Scholar 

  14. H. Funatsu, C. A. Wilson, B. A. Berkowitz, and P. L. Sonkin, A comparative study of the effects of argon and diode laser photocoagulation on retinal oxygenation, Graefes arch. Clin. Exp. Ophthalmol. 235 (3), 168-175 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. R. Zuckerman, J. E. Cheasty, and Y. Wang, Optical mapping of inner retinal tissue PO2, Curr. Eye Res. 12 (9), 809-825 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. A. K. Vine, The efficacy of additional argon laser photocoagulation for persistent, severe proliferative diabetic retinopathy, Ophthalmology 92 (11), 1532-1537 (1985).

    Google Scholar 

  17. A. Mendivil and V. Cuartero, Ocular blood flow velocities in patients with proliferative diabetic retinopathy after scatter photocoagulation. Two years of follow-up, Retina 16 (3), 222-227 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. A. Mendivil, V. Cuartero, and M. P. Mendivil, Ocular blood flow velocities in patients with proliferative diabetic retinopathy before and after scatter photocoagulation: a prospective study, Eur. J. Ophthalmol. 5 (4), 259-264 (1995).

    PubMed  CAS  Google Scholar 

  19. C. A. Wilson, B. A. Berkowitz, Y. Sato, N. Ando, J. T. Handa, and E. de Juan, Jr., Intravitreal steroid reduces blood-retinal barrier breakdown due to retinal photocoagulation, Arch. Ophthalmol. 110 (8), 1155-1159 (1992).

    PubMed  CAS  Google Scholar 

  20. L. P. Aiello, E. A. Pierce, E. D. Foley, H. Takagi, H. Chen, L. Riddle, N. Ferrara, G. L. King, and L. E. Smith, Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins, Proc. Natl. Acad. Sci. U S A. 92 (23), 10457-10461 (1995).

    Google Scholar 

  21. R. A. Linsenmeier, R. D. Braun, M. A. McRipley, L. B. Padnick, J. Ahmed, D. L. Hatchell, D. S. McLeod, and G. A. Lutty, Retinal hypoxia in long-term diabetic cats, Invest. Ophthalmol. Vis. Sci. 39 (9), 1647-1657 (1998).

    PubMed  CAS  Google Scholar 

  22. R. H. Amin, R. N. Frank, A. Kennedy, D. Eliott, J. E. Puklin, and G. W. Abrams, Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy, Invest. Ophthalmol. Vis. Sci. 38 (1), 36-47 (1997).

    PubMed  CAS  Google Scholar 

  23. G. A. Lutty, D. S. McLeod, C. Merges, A. Diggs, and J. Plouet, Localization of vascular endothelial growth factor in human retina and choroid, Arch. Ophthalmol. 114 (8), 971-977 (1996).

    PubMed  CAS  Google Scholar 

  24. R. S. Punglia, M. Lu, J. Hsu, M. Kuroki, M. J. Tolentino, K. Keough, A. P. Levy, N. S. Levy, M. A. Goldberg, R. J. D’Amato, and A. P. Adamis, Regulation of vascular endothelial growth factor expression by insulin-like growth factor I, Diabetes 46 (10), 1619-1626 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. M. Kuroki, E. E. Voest, S. Amano, L. V. Beerepoot, S. Takashima, M. Tolentino, R. Y. Kim, R. M. Rohan, K. A. Colby, K. T. Yeo, and A. P. Adamis, Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo, J. Clin. Invest. 98 (7), 1667-1675 (1996).

    PubMed  CAS  Google Scholar 

  26. G. Gao, Y. Li, D. Zhang, S. Gee, C. Crosson, and J. Ma, Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization, FEBS Lett. 489 (2-3), 270-276 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. V. Stellmach, S. E. Crawford, W. Zhou, and N. Bouck, Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor, Proc. Natl. Acad. Sci. U S A 98 (5), 2593-2597 (2001).

    Google Scholar 

  28. D. W. Dawson, O. V. Volpert, P. Gillis, S. E Crawford, H. Xu, W. Benedict, and N. P. Bouck, Pigment epithelium-derived factor: a potent inhibitor of angiogenesis, Science 285 (5425), 245-248 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. E. J. Duh, H. S. Yang, J. A. Haller, E. De Juan, M. S. Humayun, P. Gehlbach, M. Melia, D. Pieramici, J. B. Harlan, P. A. Campochiaro, and D. J. Zack, Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis, Am. J. Ophthalmol. 137 (4), 668-674 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. J. M. Holmes, S. Zhang, D. A. Leske, and W. L. Lanier, Metabolic acidosis-induced retinopathy in the neonatal rat, Invest. Ophthalmol. Vis. Sci. 40 (3), 804-809 (1999).

    PubMed  CAS  Google Scholar 

  31. S. Zhang, D. A. Leske, W. L. Lanier, B. A. Berkowitz, and J. M. Holmes, Preretinal Neovascularization Associated with Acetazolamide-Induced Systemic Acidosis in the Neonatal Rat, Invest. Ophthalmol. Vis. Sci. 42 (5), 1066-1071 (2001).

    PubMed  CAS  Google Scholar 

  32. J. M. Holmes, S. Zhang, D. A. Leske, and W. L. Lanier, The effect of carbon dioxide on oxygen-induced retinopathy in the neonatal rat, Curr. Eye Res. 16 (7), 725-732 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. R. G. Tilton, G. Pugliese, K. Chang, A. Speedy, M. A. Province, C. Kilo, and J. R. Williamson, Effects of hypothyroidism on vascular 125I-albumin permeation and blood flow in rats, Metabolism 38 (5), 471-478 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. Y. Takiguchi, N. Satoh, H. Hashimoto, and M. Nakashima, Changes in vascular reactivity in experimental diabetic rats: comparison with hypothyroid rats, Blood Vessels 25 (5), 250-260 (1988).

    PubMed  CAS  Google Scholar 

  35. E. Sevilla-Romero, A. Munoz, and M. D. Pinazo-Duran, Low thyroid hormone levels impair the perinatal development of the rat retina, Ophthalmic Res. 34 (4), 181-191 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. L. C. Navegantes, L. C. Silveira, and G. L. Santos, Effect of congenital hypothyroidism on cell density in the ganglion cell layer of the rat retina, Braz. J. Med. Biol. Res. 29 (5), 665-668 (1996).

    PubMed  CAS  Google Scholar 

  37. A. Hellstrom, C. Perruzzi, M. Ju, E. Engstrom, A. L. Hard, J. L. Liu, K. Albertsson-Wikland, B. Carlsson, A. Niklasson, L. Sjodell, D. LeRoith, D. R. Senger, and L. E. Smith, Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity, Proc. Natl. Acad. Sci. U S A 98 (10), 5804-5808 (2001).

    Google Scholar 

  38. B. A. Berkowitz, H. Luan, and R. L. Roberts, Effect of methylimidazole-induced hypothyroidism in a model of low retinal neovascular incidence, Invest. Ophthalmol. Vis. Sci. 45 (3), 919-921 (2004).

    Article  PubMed  Google Scholar 

  39. D. Y. Yu and S. J. Cringle, Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease, Prog. Retin. Eye Res. 20 (2), 175-208 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. H. Sakaue, Y. Tsukahara, A. Negi, N. Ogino, and Y. Honda, Measurement of vitreous oxygen tension in human eyes, Jpn. J. Ophthalmol. 33 (2), 199-203 (1989).

    PubMed  CAS  Google Scholar 

  41. E. Stefansson, R. Machemer, E. de Juan, Jr., B. W. McCuen, and J. Peterson, Retinal oxygenation and laser treatment in patients with diabetic retinopathy, Am. J. Ophthalmol. 113 (1), 36-38 (1992).

    PubMed  CAS  Google Scholar 

  42. J. B. Hickam and R. Frayser, Studies of the retinal circulation in man: observation on vessel diameter, arteriovenous oxygen difference, and mean circulation time, Circulation 32, 302-316 (1966).

    Google Scholar 

  43. J. S. Tiedeman, S. E. Kirk, S. Srinivas, and J. M. Beach, Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy, Ophthalmology 105 (1), 31-36 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. R. D. Shonat, D. F. Wilson, C. E. Riva, and M. Pawlowski, Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescene imaging method, Appl. Opt. 31 (19), 3711-3717 (1992).

    Article  CAS  Google Scholar 

  45. R. D. Shonat and A. C. Kight, Oxygen tension imaging in the mouse retina, Ann. Biomed. Eng. 31 (9), 1084-1096 (2003).

    Article  PubMed  Google Scholar 

  46. J. T. Handa, B. A. Berkowitz, C. A. Wilson, N. Ando, H. A. Sen, and G. J. Jaffe, Hypoxia precedes the development of experimental preretinal neovascularization, Graefes Arch. Clin. Exp. Ophthalmol. 234 (1), 43-46 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. C. A. Wilson, B. A. Berkowitz, and D. L. Hatchell, Oxygen kinetics in preretinal perfluorotributylamine, Exp. Eye Res. 55 (1), 119-126 (1992).

    Article  PubMed  CAS  Google Scholar 

  48. C. A. Wilson, B. A. Berkowitz, B. W. McCuen, and H. C. Charles, Measurement of preretinal oxygen tension in the vitrectomized human eye using fluorine-19 magnetic resonance spectroscopy, Arch. Ophthalmol. 110 (8), 1098-1100 (1992).

    PubMed  CAS  Google Scholar 

  49. W. Zhang, Y. Ito, E. Berlin, R. Roberts, and B. A. Berkowitz, Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci. 44 (7), 3119-3123 (2003).

    Article  PubMed  Google Scholar 

  50. C. A. Wilson, J. D. Benner, B. A. Berkowitz, C. B. Chapman, and R. M. Peshock, Transcorneal oxygenation of the preretinal vitreous, Arch. Ophthalmol. 112 (6), 839-845 (1994).

    PubMed  CAS  Google Scholar 

  51. C. J. Pournaras, Retinal oxygen distribution. Its role in the physiopathology of vasoproliferative microangiopathies, Retina 15 (4), 332-347 (1995).

    Google Scholar 

  52. J. T. Ernest and T. K. Goldstick, Retinal oxygen tension and oxygen reactivity in retinopathy of prematurity in kittens, Invest. Ophthalmol. Vis. Sci. 25 (10), 1129-1134 (1984).

    PubMed  CAS  Google Scholar 

  53. J. T. Ernest and D. B. Archer, Vitreous body oxygen tension following experimental branch retinal vein obstruction, Invest. Ophthalmol. Vis. Sci. 18 (10), 1025-1029 (1979).

    PubMed  CAS  Google Scholar 

  54. S. Yoshida, A. Yoshida, and T. Ishibashi, Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation, Graefes Arch. Clin. Exp. Ophthalmol. 242 (5), 409-413 (2004).

    Article  PubMed  CAS  Google Scholar 

  55. B. J. Moeller, Y. Cao, Z. Vujaskovic, C. Y. Li, Z. A. Haroon, and M. W. Dewhirst, The relationship between hypoxia and angiogenesis, Semin. Radiat. Oncol. 14 (3),215-221 (2004).

    Article  PubMed  Google Scholar 

  56. F. Sennlaub, F. Valamanesh, A. Vazquez-Tello, A. M. El-Asrar, D. Checchin, S. Brault, F. Gobeil, M. H. Beauchamp, B. Mwaikambo, Y. Courtois, K. Geboes, D. R. Varma, P. Lachapelle, H. Ong, F. Behar-Cohen, and S. Chemtob, Cyclooxygenase-2 in human and experimental ischemic proliferative retinopathy, Circulation 108 (2), 198-204 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. T. Abiko, A. Abiko, A. C. Clermont, B. Shoelson, N. Horio, J. Takahashi, A. P. Adamis, G. L. King, and S. E. Bursell, Characterization of Retinal Leukostasis and Hemodynamics in Insulin Resistance and Diabetes: Role of Oxidants and Protein Kinase-C Activation, Diabetes 52 (3), 829-837 (2003).

    Article  PubMed  CAS  Google Scholar 

  58. A. N. Antoszyk, J. L. Gottlieb, R. C. Casey, D. L. Hatchell, and R. Machemer, An experimental model of preretinal neovascularization in the rabbit, Invest. Ophthalmol. Vis. Sci. 32 (1), 46-52 (1991).

    PubMed  CAS  Google Scholar 

  59. S. Hughes, H. Yang, and T. Chan-Ling, Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis, Invest. Ophthalmol. Vis. Sci. 41 (5), 1217-1228 (2000).

    PubMed  CAS  Google Scholar 

  60. R. L. Engerman and R. K. Meyer, Development of retinal vasculature in rats, Am. J. Ophthalmol. 60 (4), 628-641 (1965).

    PubMed  CAS  Google Scholar 

  61. J. S. Penn, M. M. Henry, and B. L. Tolman, Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat, Pediatr. Res. 36 (6), 724-731 (1994).

    Article  PubMed  CAS  Google Scholar 

  62. S. Ishida, T. Usui, K. Yamashiro, Y. Kaji, E. Ahmed, K. G. Carrasquillo, S. Amano, T. Hida, Y. Oguchi, and A. P. Adamis, VEGF(164) Is Proinflammatory in the Diabetic Retina, Invest. Ophthalmol. Vis. Sci. 44 (5), 2155-2162 (2003).

    Article  PubMed  Google Scholar 

  63. S. Ishida, T. Usui, K. Yamashiro, Y. Kaji, S. Amano, Y. Ogura, T. Hida, Y. Oguchi, J. Ambati, J. W. Miller, E. S. Gragoudas, Y. S. Ng, P. A. D’Amore, D. T. Shima, and A. P. Adamis, VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization, J. Exp. Med. 198 (3), 483-489 (2003).

    Article  PubMed  CAS  Google Scholar 

  64. C. Heneghan, J. Flynn, M. O’Keefe, and M. Cahill, Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis, Med. Image Anal. 6 (4), 407-429 (2002).

    Article  PubMed  Google Scholar 

  65. K. A. Roberto, B. L. Tolman, and J. S. Penn, Long-term retinal vascular abnormalities in an animal model of retinopathy of prematurity, Curr. Eye Res. 15 (9), 932-937 (1996).

    Article  PubMed  CAS  Google Scholar 

  66. J. M. Lopes de Faria, A. E. Jalkh, C. L. Trempe, and J. W. McMeel, Diabetic macular edema: risk factors and concomitants, Acta Ophthalmol. Scand. 77 (2), 170-175 (1999).

    Article  PubMed  CAS  Google Scholar 

  67. P. R. Aroca, M. Salvat, J. Fernandez, and I. Mendez, Risk factors for diffuse and focal macular edema, J. Diabetes Complications 18 (4), 211-215 (2004).

    Article  PubMed  Google Scholar 

  68. B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, Subnormal retinal oxygenation response precedes diabetic-like retinopathy, Invest. Ophthalmol. Vis. Sci. 40 (9), 2100-2105 (1999).

    PubMed  CAS  Google Scholar 

  69. B. A. Berkowitz and J. S. Penn, Abnormal panretinal response pattern to carbogen inhalation in experimental retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci. 39 (5), 840-845 (1998).

    PubMed  CAS  Google Scholar 

  70. B. A. Berkowitz, Role of dissolved plasma oxygen in hyperoxia-induced contrast, Magn. Reson. Imaging 15 (1), 123-126 (1997).

    Google Scholar 

  71. B. A. Berkowitz, Adult and newborn rat inner retinal oxygenation during carbogen and 100% oxygen breathing. Comparison using magnetic resonance imaging delta Po2 mapping, Invest. Ophthalmol. Vis. Sci. 37 (10), 2089-2098 (1996).

    Google Scholar 

  72. B. A. Berkowitz and C. A. Wilson, Quantitative mapping of ocular oxygenation using magnetic resonance imaging, Magn. Reson. Med. 33 (4), 579-581 (1995).

    Article  PubMed  CAS  Google Scholar 

  73. D. Y. Yu, S. J. Cringle, V. Alder, and E. N. Su, Intraretinal oxygen distribution in the rat with graded systemic hyperoxia and hypercapnia, Invest. Ophthalmol. Vis. Sci. 40 (9), 2082-2087 (1999).

    PubMed  CAS  Google Scholar 

  74. B. A. Berkowitz, H. Luan, R. R. Gupta, D. Pacheco, A. Seidner, R. Roberts, J. Liggett, D. L. Knoerzer, J. R. Connor, Y. Du, T. S. Kern, and Y. Ito, Regulation of the early subnormal retinal oxygenation response in experimental diabetes by inducible nitric oxide synthase, Diabetes 53 (1), 173-178 (2004).

    Article  PubMed  CAS  Google Scholar 

  75. H. Luan, M. Leitges, R. R. Gupta, D. Pacheco, A. Seidner, J. Liggett, Y. Ito, R. Kowluru, and B. A. Berkowitz, Effect of PKCbeta on Retinal Oxygenation Response in Experimental Diabetes, Invest. Ophthalmol. Vis. Sci. 45 (3), 937-942 (2004).

    Article  PubMed  Google Scholar 

  76. R. Roberts, W. Zhang, Y. Ito, and B. A. Berkowitz, Spatial pattern and temporal evolution of retinal oxygenation response in oxygen-induced retinopathy, Invest. Ophthalmol. Vis. Sci. 44 (12), 5315-5320 (2003).

    Article  PubMed  Google Scholar 

  77. B. A. Berkowitz, C. McDonald, Y. Ito, P. S. Tofts, Z. Latif, and J. Gross, Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept, Magn. Reson. Med. 46 (2), 412-416 (2001).

    Article  PubMed  CAS  Google Scholar 

  78. J. S. Penn and M. M. Henry, Evaluation of blood vessel assessment techniques in animals with retinal vascular disease, Journal of Ophthalmic Photography 18 (1), 26-34 (1996).

    Google Scholar 

  79. B. A. Berkowitz, R. A. Lukaszew, C. M. Mullins, and J. S. Penn, Impaired hyaloidal circulation function and uncoordinated ocular growth patterns in experimental retinopathy of prematurity, Invest. Ophthalmol. Vis. Sci. 39 (2), 391-396 (1998).

    PubMed  CAS  Google Scholar 

  80. G. L. Trick, P. Edwards, U. Desai, and B. A. Berkowitz, Early supernormal retinal oxygenation response in patients with diabetes, Invest. Ophthalmol. Vis. Sci. 47 (4), 1612-1619 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Berkowitz, B.A. (2008). Hypoxia and Retinal Neovascularization. In: Penn, J. (eds) Retinal and Choroidal Angiogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6780-8_8

Download citation

Publish with us

Policies and ethics