Skip to main content

Tumor Cell Resistance to Apoptosis by Infi ltrating Cytotoxic Lymphocytes

  • Chapter
Book cover Innate and Adaptive Immunity in the Tumor Microenvironment

Part of the book series: The Tumor Microenvironment ((TTME,volume 1))

  • 750 Accesses

Cancer patients have been treated with conventional chemotherapy, radiation, and hormonal therapy with significant clinical responses. However, patients develop resistance and they no longer respond to the above therapies. Immunotherapy has been considered as an alternative approach to overcome resistance and several antibody-mediated new cell-mediated therapies have been introduced and yielded significant clinical responses. The development of cell mediated antitumor cytotoxic immunotherapy has also advanced significantly with the design of numerous strategies to generate a specific antitumor cytotoxic response. However, the clinical response with cytotoxic immunotherapy remains poor and several proposed mechanisms have been suggested for the poor response. One mechanism that received little attention is the development of tumor cell resistance to cytotoxic stimuli, including both antibody-mediated and cell-mediated. The resistance, inherent or acquired, primarily results from the dysregulation of apoptotic pathways in the tumor cells and thus rendering them refractory to apoptotic stimuli including chemotherapy, radiation, and immunotherapy. The development of cross-resistance to apoptosis may play an important role in the poor clinical response observed in patients with a strong cytotoxic immune system. The molecular understanding of immune resistance identified many targets whose modifications by selective sensitizing agents reversed resistance. Such sensitizing agents included low concentrations of chemotherapeutic drugs, chemical and pharmacological inhibitors of survival pathways, anti-receptor antibodies, siRNA, cytokines, etc. Such sensitizing agents when used in combination with immunotherapy reversed immune resistance. In addition, the tumor microenvironment is regulated by infiltrating cells and the secretion of several factors that regulate tumor cell sensitivity to killing. Agents that can interfere with these factors should potentiate the reversal of immune resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patel, N.H. and Rothenberg, M.L., 1994, Multidrug resistance in cancer chemotherapy, Invest New Drugs 12:1.

    Article  PubMed  CAS  Google Scholar 

  2. Kurnick, J.T. and Kradin, R.L., 1991, Adoptive immunotherapy with recombinant interleukin 2, LAK and TIL, Allergol. Immunopathol. (Madr) 19:209.

    Google Scholar 

  3. Sogn, J.A., 1998, Tumor immunology: the glass is half full, Immunity 9:757.

    Article  PubMed  CAS  Google Scholar 

  4. Mule, J.J., Shu, S., Schwarz, S.L., and Rosenberg, S.A., 1984, Adoptive immunotherapy of established pulmonary metastases with LAK clls and recombinant interleukin-2, Science 225:1487.

    Article  PubMed  CAS  Google Scholar 

  5. Rosenberg, S.A., Lotze, M.T., Muul, L.M., Chang, A.E., Avis, F.P., Leitman, S., Linehan, W.M., Robertson, C.N., Lee, R.E., Rubin, J.T., et al., 1987, A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone, N. Engl. J. Med. 316:889.

    PubMed  CAS  Google Scholar 

  6. Tan, Y., Xu, M., Wang, W., Zhang, F., Li, D., Xu, X., Gu, J., and Hoffman, R.M., 1996, IL-2 gene therapy of advanced lung cancer patients, Anticancer Res. 16:1993.

    PubMed  CAS  Google Scholar 

  7. Cormier, J.N., Salgaller, M.L., Prevette, T., Barracchini, K.C., Rivoltini, L., Restifo, N.P., Rosenberg, S.A., and Marincola, F.M., 1997, Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A, Cancer J. Sci. Am. 3:37.

    PubMed  CAS  Google Scholar 

  8. Reed, J.C., 1999, Mechanisms of apoptosis avoidance in cancer, Curr. Opin. Oncol. 11:68.

    Article  PubMed  CAS  Google Scholar 

  9. Martin, S.J. and Green, D.R., 1994, Apoptosis as a goal of cancer therapy, Curr. Opin. Oncol. 6:616.

    Article  PubMed  CAS  Google Scholar 

  10. Thompson, C.B., 1995, Apoptosis in the pathogenesis and treatment of disease, Science 267:1456.

    Article  PubMed  CAS  Google Scholar 

  11. Shresta, S., Pham, C.T., Thomas, D.A., Graubert, T.A., and Ley, T.J., 1998, How do cytotoxic lymphocytes kill their targets? Curr. Opin. Immunol. 10:581.

    Article  PubMed  CAS  Google Scholar 

  12. Ashkenazi, A. and Dixit, V.M., 1998, Death receptors: signaling and modulation, Science 281:1305.

    Article  PubMed  CAS  Google Scholar 

  13. Thomas, W., and Hersey P., 1998, TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells, J. Immunol. 161:2195.

    PubMed  CAS  Google Scholar 

  14. Frost, P.J., Butterfield, L.H., Dissette, V.B., Economou, J.S., and Bonavida, B., 2001, Immunosensitization of Melanoma Tumor Cells to Non-MHC Fas-Mediated Killing by MART-1-Specific CTL Cultures, J. Immunol. 166:3564.

    PubMed  CAS  Google Scholar 

  15. Hengartner, M.O., 2000, The biochemistry of apoptosis, Nature 407:770.

    Article  PubMed  CAS  Google Scholar 

  16. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X., 1998, Bid, a Bcl2 interacting protein, mediateds cytochrome c release from mitochondria in response to activation of cell surface death receptors, Cell 94:481.

    Article  PubMed  CAS  Google Scholar 

  17. Los, M., Herr, I., Friesen, C., Fulda, S., Schulze-Osthoff, K., and Debatin, K.M., 1997, Cross-resistance of CD95- and drug-induced apoptosis as a consequence of deficient activation of caspases (ICE/Ced-3 proteases), Blood 90:3118.

    PubMed  CAS  Google Scholar 

  18. Wang, G.Q., Gastman, B.R., Wieckowski, E.U., Goldstein, L.A., Rabinovitz, A., Yin, X.M., and Rabinowich, H., 2000, Apoptosis-resistant mitochondria in T cells selected for resistance to FAS signaling, J. Biol. Chem. 276:3610.

    Article  PubMed  Google Scholar 

  19. Safrit, J.T. and Bonavida, B., 1992, Hierarchy of in vitro sensitivity and resistance of tumor cells to cytotoxic effector cells, cytokines, drugs and toxins, Cancer Immunol. Immunother. 34:321.

    Article  PubMed  CAS  Google Scholar 

  20. Landowski, T.H., Gleason-Guzman, M.C., and Dalton, W.S., 1997, Selection for drug resistance results in resistance to Fas-mediated apoptosis, Blood 89:1854.

    PubMed  CAS  Google Scholar 

  21. Lehmann, C., Zeis, M., Schmitz, N., and Uharek, L., 2000, Impaired binding of perforin on the surface of tumor cells is a cause of target cell resistance against cytotoxic effector cells, Blood 96:594.

    PubMed  CAS  Google Scholar 

  22. Chouaib, S., Thiery, J., Gati, A., Guerra, N., El Behi, M., Dorothee, G., Mami-Chouaib, F., Bellet, D., and Caignard, A., 2002, Tumor escape from killing: role of killer inhibitory receptors and acquisition of tumor resistance to cell death, Tissue Antigens 60:273.

    Article  PubMed  CAS  Google Scholar 

  23. Medema, J.P., Schuurhuis, D.H., Rea, D., van Tongeren, J., de Jong, J., Bres, S.A., Laban, S., Toes, R.E., Toebes, M., Schumacher, T.N., Bladergroen, B.A., Ossendorp, F., Kummer, J.A., Melief, C.J., and Offringa, R., 2001, Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type 1 and type 2 cells, J. Exp. Med. 194:657.

    Article  PubMed  CAS  Google Scholar 

  24. Bots, M., VAN Bostelen, L., Rademaker, M.T., Offringa, R., and Medema, J.P., 2006, Serpins prevent granzyme-induced death in a species-specific manner, Immunol. Cell Biol. 84:79.

    Article  PubMed  CAS  Google Scholar 

  25. Ruberti, G., Cascino, I., Papoff, G., and Eramo, A., 1996, Fas splicing variants and thier effect on apoptosis, Adv. Exp. Me. Biol. 406:125.

    CAS  Google Scholar 

  26. Eberstadt, M., Huang, B., Olejniczak, E.T., and Fesik, S.W., 1997, The lymphoproliferation mutation in Fas locally unfolds the Fas death domain, Nat. Struct. Biol. 4:983.

    Article  PubMed  CAS  Google Scholar 

  27. Martinez-Lorenzo, M.J., Gamen, S., Etxeberria, J., Lasierra, P., Larrad, L., Pineiro, A., Anel, A., Naval, J., and Alava, M.A., 1998, Resistance to apoptosis correlates with a highly proliferative phenotype and loss of Fas and CPP32 (caspase-3) expression in human leukemia cells, Int. J. Cancer 75:473.

    Article  PubMed  CAS  Google Scholar 

  28. Gajate, C., and Mollinedo, F., 2005, Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy, J. Biol. Chem. 280:11641.

    Article  PubMed  CAS  Google Scholar 

  29. Abouzahr, S., Bismuth, G., Gaudin, C., Caroll, O, Van Endert, P., Jalil, A., Dausset, J., Vergnon, I., Richon, C., Kauffmann, A., Galon, J., Raposo, G., Mami-Chouaib, F., and Chouaib, S., 2006, Identification of target actin content and polymerization status as a mechanism of tumor resistance after cytolytic T lymphocyte pressure, PNAS 103:1428.

    Article  PubMed  CAS  Google Scholar 

  30. Vousden, K.H., and Lu, X., 2002, Live or let die: the cell’s response to p53, Nat. Rev. Cancer 2:594.

    Article  PubMed  CAS  Google Scholar 

  31. Brown, J.M., and Wouters, B.G., 1999, Apoptosis, p53, and tumor cell sensitivity to anticancer agents, Cancer Res. 59:1391.

    PubMed  CAS  Google Scholar 

  32. Thiery, J., Abouzahr, S., Dorothee, G., Jalil, A., Richon, C., Vergnon, I., Mami-Chouaib, F., and Chouai, S., 2005, p53 potentiation of tumor cell susceptibility to CTL involves Fas and mitochondrial pathways, J. Immunol. 174:871.

    PubMed  CAS  Google Scholar 

  33. Mizutani, Y., Yoshida, O., and Bonavida, B., 1998, Sensitization of human bladder cancer cells to FAS-mediated cytotoxicity by cix-diamminedichloroplatinum (II), J. Urol. 309:160.

    Google Scholar 

  34. Mori, S., Murakami-Mori, K., Nakamura, S., Ashkenazi, A., and Bonavida, B., 1999, Sensitization of AIDS-Kaposi’s sarcoma cells to Apo-2 ligand-induced apoptosis by actinomycin D, J. Immunol. 162:5616.

    PubMed  CAS  Google Scholar 

  35. Wen, J., Ramadevi, N., Nguyen, D., Perkins, C., Worthington, E., and Bhalla, K., 2000, Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L induced apoptosis of human acute leukemia cells, Blood 96:3900.

    PubMed  CAS  Google Scholar 

  36. Baritaki, V., Huerta-Yepez, S., Sakai, T., Spandidos, D., and Bonavida, B., 2007, Chemotherapeutic drugs sensitize cancer cells to TRAIL-mediated apoptosis: upregulation of DR5 and inhibition of YY1, Mol. Cancer Thers. (In Press).

    Google Scholar 

  37. Jazirehi, A.R., Ng, C.P., Schiller, G., and Bonavida, B., 2001, Adrenomycin sensitizes the adrenomycin-resistant 8226/Dox 40 human multiple myeloma cells to TRAIL/Apo2L-mediated apoptosis, Clin. Cancer Res. 7:3874.

    PubMed  CAS  Google Scholar 

  38. Fulda, S., Meyer, E., and Debatin, K.M., 2000, Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression, Cancer Res 60:3947.

    PubMed  CAS  Google Scholar 

  39. Solary, E., Plenchette, S., Sordet, O., Rebe, C., Ducoroy, P., Filomenko, R., Bruey, J.M., Droin, N., and Corcos, L., 2001, Modulation of apoptotic pathways triggered by cytotoxic agents, Therapie (Review) 56(5):511.

    Google Scholar 

  40. Uslu, R., Borsellino, N., Frost, P., Garban, H., Ng, C.P., Mizutani, Y., Belldegrun, A., and Bonavida, B., 1997, Chemosensitization of human prostate carcinoma cell lines to anti-fas-mediated cytotoxicity and apoptosis, Clin. Cancer Res. 3:963.

    PubMed  CAS  Google Scholar 

  41. Petak, I., Tillman, D.M., and Houghton, J.A., 2007, p53 dependence of Fas induction and acute apoptosis in response to 5-Fluorouracil-Leucovorin in human colon carcinoma cell lines, Clin. Cancer Res. 6:4432.

    Google Scholar 

  42. Huerta-Yepez, S., Vega, M., Jazirehi, A.R., Garban, H., Hongo, F., Cheng, G., and Bonavida, B., 2004, Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kB and inhibition of Bcl-xL expression, Oncogene 23:4993.

    Article  PubMed  CAS  Google Scholar 

  43. Mueller, et al., 1998.

    Google Scholar 

  44. Garban, H., and Bonavida, B., 2001, Nitric oxide inhibits the transcription receptor Yin-Yang 1 binding activity at the silencer region of the Fas Promoter: a pivotal role for nitric oxide in the upregulation of Fas gene expression in human tumor cells, J. Immunol. 167:75.

    PubMed  CAS  Google Scholar 

  45. Peter, M.E., Kischkel, F.C., Scheuerpflug, C.G., Medema, J.P., Debatin, K.M., and Krammer, P.H., 1997, Resistance of cultured peripheral T cells towards activation-induced cell death involves a lack of recruitment of FLICE (MACH/caspase 8) to the CD95 death-inducing signaling complex, Eur. J. Immunol. 27:1207.

    Article  PubMed  CAS  Google Scholar 

  46. Micheau, O., Hammann, A., Solary, E., and Dimanche-Boitrel, M.T., 1999, STAT-1-independent upregulation of FADD and procaspase-3 and -8 in cancer cells treated with cytotoxic drugs, Biochem. Biophys. Res. Commun. 256:603.

    Article  PubMed  CAS  Google Scholar 

  47. Ng, C.P., Frost, P., Garban, H., and Bonavida, B., 1998, Mechanism of chemo-immunosensitization of prostate carcinoma target cells to cytotoxic lymphocytes-mediated apoptosis, Proc. AACR 39:356.

    Google Scholar 

  48. Zou, H., Li, Y., Liu, X., and Wang, X., 1999, An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9, J. Biol. Chem. 274:11549.

    Article  PubMed  CAS  Google Scholar 

  49. Kinoshita, H., Yoshikawa, H., Shiiki, K., Hamada, Y., Nakajima, Y., and Tasaka, K., 2000, Cisplatin (CDDP) sensitizes human osteosarcoma cell to Fas/CD95-mediated apoptosis by down-regulating FLIP-L expression, Int. J. Cancer 88:986.

    Article  PubMed  CAS  Google Scholar 

  50. Droin, N., Dubrez, L., Eymin, B., Renvoizé, C., Bréard, J., Dimanche-Boitrel, M.T., and Solary, E., 1998, Upregulation of CASP genes in human tumor cells undergoing etoposide-induced apoptosis, Oncogene 16:2885.

    Article  PubMed  CAS  Google Scholar 

  51. Green, D.R. and Reed, J.C., 1998, Mitochondria and apoptosis, Science 281:1309.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang, L., Yu, J., Park, B.H., Kinzler K.W., and Vogelstein, B., 2000, Role of BAX in the apoptotic response to anticancer agents, Science 290:989.

    Article  PubMed  CAS  Google Scholar 

  53. Yang, Y.L. and Li, X.M., 2000, The IAP family: endogenous caspase inhibitors with multiple biological activities, Cell Res. 10:169.

    Article  PubMed  CAS  Google Scholar 

  54. Deveraux, Q.L., Roy, N., Stennicke, H.R., Van Arsdale, T., Zhou, Q., Srinivasula, S.M., Alnemri, E.S., Salvesen, G.S., and Reed, J.C., 1998, IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases, EMBO J. 17:2215.

    Google Scholar 

  55. Zisman, A., Ng, C.P., Pantuck, A.J., Bonavida, B., and Belldegrun, A.S., 2001, Actinomycin D and gemcitabine synergistically sensitize androgen-independent prostate cancer cells to Apo2L/TRAIL-mediated apoptosis, J. Immunother. 24:459.

    Article  PubMed  CAS  Google Scholar 

  56. Suzuki, A., Tsutomi, Y., Akahane, K., Araki, T., and Miura, M., 1998, Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21 WAF1 and IAP gene family ILP, Oncogene 17:931.

    Article  PubMed  CAS  Google Scholar 

  57. Vega, M.I., Jazirehi, A.R., Huerta-Yepez, S., and Bonavida, B., 2005, Rituximab-induced inhibition of YY1 and Bcl-xL expression in Ramos non-Hodgkin’s lymphoma cell line via inhibition of NF-pB activity: role of YY1 and Bcl-xL in Fas resistance and chemoresistance, respectively, J. Immunol. 175:2174.

    PubMed  CAS  Google Scholar 

  58. Vega, M.I., Huerta-Yepez, S., Jazirehi, A.R., Garban, H., and Bonavida, B., 2005, Rituximab (chimeric anti-CD20) sensitizes B-NHL cell lines to Fas-induced apoptosis, Oncogene 24:8114.

    PubMed  CAS  Google Scholar 

  59. Hongo, F., Huerta-Yepez, S., Vega, M., Garban, H., Jazirehi, A., Mizutani, Y., Miki, T., and Bonavida, B., 2005, Inhibition of the transcription factor Yin Yang 1 (YY1) activity by S-nitrosation, Biochem. Biophys. Res. Commun. 336:692.

    Article  PubMed  CAS  Google Scholar 

  60. Bonavida, B., Khineche S., Huerta-Yepez S., and Garban H., 2006, Therapeutic potential of nitric oxide in cancer, Drug Resist Updat. 9:157.

    Article  PubMed  CAS  Google Scholar 

  61. Jazirehi, A., and Bonavida, B., 2005, Cellular and molecular signal transduction pathways modulated by Rituximab (Rituxan, anti-CD20 mAb) in Non-Hodgkin’s lymphoma: implications in chemo-sensitization, Oncogene 24:2142.

    Article  CAS  Google Scholar 

  62. Ng, C-P., and Bonavida, B., 2002, A new challenge to immunotherapy by tumors that are resistant to apoptosis: two complementary signals to overcome cross-resistance, Adv. Cancer Res. 85:145.

    Article  PubMed  CAS  Google Scholar 

  63. Jazirehi, A., Vega., MI., and Bonavida, B., 2007, Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy, Cancer Res. 67:1270.

    Article  PubMed  CAS  Google Scholar 

  64. Vega, et al., 2006, in preparation.

    Google Scholar 

  65. Suzuki, et al., 1999, in preparation.

    Google Scholar 

  66. Katsman, A., Umezawa, K., and Bonavida, B., 2007, Reversal of resistance to cytotoxic cancer therapies: DHMEQ as a chemo-sensitizing and immuno-sensitizing agent, Drug Resist Updat. Epub [In Press].

    Google Scholar 

  67. Wouters, B.G., and Brown, J.M., 1997, Cells at intermediate oxygen levels can be more important than the “hypoxic fraction” in determining tumor response to fractionated radiotherapy, Radiat. Res. 147:541.

    Article  PubMed  CAS  Google Scholar 

  68. Kwon, S.J., Song, J.J., and Lee, Y.J., 2005, Signal pathway of hypoxia-inducible factor-1alpha phosphorylation and its interaction with von Hippel-Lindau tumor suppressor protein during ischemia in MiaPaCa-2 pancreatic cancer cells, Clin. Cancer Res. 11:7607–13.

    Article  PubMed  CAS  Google Scholar 

  69. Kim, K.U., Wilson, S.M., Abayasiriwardana, K.S., Collins, R., Fjellbirkeland, L., Xu, Z., Jablons, D.M., Nishimura, S.L., and Broaddus, V.C., 2005, A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance, Am. J. Respir. Cell Mol. Biol. 33:541.

    Article  PubMed  CAS  Google Scholar 

  70. Mace, T.A., Yamane, N., Cheng, J., Hylander, B.L., and Repasky, E.A., 2006, The potential of the tumor microenvironment to influence Apo2L/TRAIL induced apoptosis, Immunol. Invest. 35:279.

    Article  PubMed  CAS  Google Scholar 

  71. Bhowmick, N.A., Neilson, E.G., and Moses, H.L., 2004, Stromal fibroblasts in cancer initiation and progression, Nature 432:332.

    Article  PubMed  CAS  Google Scholar 

  72. Miyashita, T., Kawakami, A., Nakasima, T., Yamasaki, D., Tamai, M., Tanaka, F., Kamachi, M., Ida, H., Migi ta, K., Origuchi, T., Nakao, K., and Eguchi, K., 2004, Osteoprotegerin (OPG) acts as an endogenous decoy receptor in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis of fibroblast-like synovial cells, Clin. Exp. Immunol. 137:430.

    Google Scholar 

  73. Rosenthal, E.L., Zhang, W., Talbert, M., Raisch, K.P., and Peters, and G.E., 2005, Extracellular matrix metalloprotease inducer-expressing head and neck squamous cell carcinoma cells promote fibroblast-mediated type I collagen degradation in vitro, Mol. Cancer Res. 3:195.

    PubMed  CAS  Google Scholar 

  74. Abdollahi, T., Robertson, N.M., Abdollahi, A., and Litwack, G., 2003, Identification of interleukin 8 as an inhibitor of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in the ovarian carcinoma cell line OVCAR3, Cancer Res. 63:4521.

    PubMed  CAS  Google Scholar 

  75. Albertsson, P., Kim, M.H., Jonges, L.E., Kitson, R.P., Kuppen, P.J., Johansson, B.R., Nannmark, U., and Goldfarb, R.H., 2000, Matrix metalloproteinases of human NK cells, In Vivo 14:269–76.

    PubMed  CAS  Google Scholar 

  76. Limb, G.A., Daniels, J.T., Cambrey, A.D., Secker, G.A., Shortt, A.J., Lawrence, J.M., and Khaw, P.T., 2005, Current prospects for adult stem cell-based therapies in ocular repair and regeneration, Curr. Eye Res. 31:381.

    Article  CAS  Google Scholar 

  77. Nyormoi, O., Mills, L., and Bar-Eli, M., 2003, An MMP-2/MMP-9 inhibitor, 5a, enhances apoptosis induced by ligands of the TNF receptor superfamily in cancer cells. Cell Death Differ. 10:558.

    Article  PubMed  CAS  Google Scholar 

  78. Sengupta, S., Eavarone, D., Capila, I., Zhao, G., Watson, N., Kiziltepe, T., and Sasisekharan, R., 2005, Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system, Nature 436:568.

    Article  PubMed  CAS  Google Scholar 

  79. Otten, H.G., van Ginkel, W.G.J., Hagenbeek, A., and Petersen, E.J., 2004, Prevalence and clinical significance of resistance to perforin- and FAS-mediated cell death in leukemia, Leukemia 18:1401.

    Article  PubMed  CAS  Google Scholar 

  80. Griffith, T.S., Brunner, T., Fletcher, S.M., Green, D.R., and Ferguson, T.A., 1995, Fas ligand-induced apoptosis as a mechanism of immune privilege, Science 270:1189.

    Article  PubMed  CAS  Google Scholar 

  81. Snell, V., Clodi, K., Zhao, S., Goodwin, R., Thomas, E.K., Morris, S.W., Kadin, M.E., Cabanillas, F., Andreeff, M., and Younes, A., 1997, Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematological malignancies, Br. J. Haematol. 99:618.

    Article  PubMed  CAS  Google Scholar 

  82. Del Poeta, G., Venditti, A., Del Principe, M.I., Maurillo, L., Buccisano, F., Tamburini, A., Cox, M.C., Franchi, A., Bruno, A., Mazzone, C., Panetta, P., Suppo, G., Masi, M., and Amadori, S., 2003, Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML), Blood 101:2125.

    Article  PubMed  CAS  Google Scholar 

  83. Mayes, P.A., Campbell, L., Ricci, M.S., Plastaras, J.P., Dicker D.T., and el-Deiry, W.S., 2005, Modulation of TRAIL-induced tumor cell apoptosis in a hypoxic environment, Cancer Biol. Ther. 4:1068.

    Article  PubMed  CAS  Google Scholar 

  84. Mueller, A., Odze, R., Jenkins, T.D., Shahsesfaei, A., Nakagawa, H., Inomoto, T., and Rustgi, A.K., 1997, A transgenic mouse model with cyclin D1 overexpression results in cell cycle, epidermal growth factor receptor, and p53 abnormalities, Cancer Res. 57:5542.

    PubMed  CAS  Google Scholar 

  85. Sheikh, M.S., Burns, T.F., Huang, Y., Wu, G.S., Amundson, S., Brooks, K.S., Fornace, A.J. Jr., and el-Deiry, W.S., 1998, p53-dependent and–independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha, Cancer Res. 58:1593.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Bonavida, B. (2008). Tumor Cell Resistance to Apoptosis by Infi ltrating Cytotoxic Lymphocytes. In: Yefenof, E. (eds) Innate and Adaptive Immunity in the Tumor Microenvironment. The Tumor Microenvironment, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6750-1_6

Download citation

Publish with us

Policies and ethics