Skip to main content

Photo-Electrochemical Production of Hydrogen

  • Chapter

The direct conversion of solar energy into hydrogen represents an attractive but challenging alternative for photovoltaic solar cells. Several metal oxide semiconductors are able to split water into hydrogen and oxygen upon illumination, but the efficiencies are still quite low. The operating principles of the photoelectrochemical device, the materials requirements, main bottlenecks, and the various device concepts will be discussed, and some promising directions for future research will be indicated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis, N.S. and Nocera, D.G., Powering the planet: Chemical challenges in solar energy utilization, Proc. Nat. Acad. Sci. USA 103, 2006, 15729).

    Article  Google Scholar 

  2. Basic Research Needs for Solar Energy Utilization, Report of the US Department of Energy, Office of Basic Energy Sciences, 2005.

    Google Scholar 

  3. Khaselev, O., Bansal, A. and Turner, J.A., High-efficiency integrated multi-junction photovoltaic/electrolysis systems for hydrogen production, Int. J. Hydrogen Energy 26, 127 (2001).

    Article  Google Scholar 

  4. Morrison, S.R., Electrochemistry of Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980.

    Google Scholar 

  5. Memming, R., Semiconductor Electrochemistry, Wiley, 2000.

    Google Scholar 

  6. Basu, P.K., Theory of Optical Processes in Semiconductors, Oxford University Press, 1997.

    Google Scholar 

  7. Kittel, C., Introduction to Solid State Physics, Wiley, New York, 1986.

    Google Scholar 

  8. Weber, M.F. and Dignam, M.J., Efficiency of splitting water with semiconducting photoelec- trodes, J. Electrochem. Soc. 131, 1984, 1258.

    Article  Google Scholar 

  9. Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D. and Glasscock, J.A., Efficiency of solar water splitting using semiconductor electrodes, Int. J. Hydrogen Energy 31, 2006, 1999.

    Article  Google Scholar 

  10. Bolton, J.R., Strickler, S.J. and Connolly, J.S., Limiting and realizable efficiencies of solar photolysis of water, Nature 316, 1985, 495.

    Article  Google Scholar 

  11. Weber, M.F. and Dignam, M.J., Splitting water with semiconducting photoelectrodes - Effi- ciency considerations, Int. J. Hydrogen Energy 11, 1986, 225.

    Article  Google Scholar 

  12. Shinar, R. and Kennedy, J.H., Competition reactions at alpha-Fe2 O3 photo-anodes, J. Electro- chem. Soc. 130, 1983, 860.

    Article  Google Scholar 

  13. Shinar, R. and Kennedy, J.H., Photoactivity of doped alpha-Fe2 O3 electrodes, Solar Energy Mater. 6, 1982, 323.

    Article  Google Scholar 

  14. Fujishima, A. and Honda, K., Electrochemical photolysis of water at a semiconductor elec- trode, Nature 238, 1972, 37.

    Article  Google Scholar 

  15. Mavroides, J.G., Kafalas, J.A. and Kolesar, D.F., Photoelectrolysis of water in cells with SrTiO3 anodes, Appl. Phys. Lett. 28, 1976, 241.

    Article  Google Scholar 

  16. Brus, L., Electronic wave-functions in semiconductor clusters - Experiment and theory, J. Phys. Chem. 90, 1986, 2555.

    Google Scholar 

  17. Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J. and Guo, J.H., Onedimensional quantum-confinement effect in alpha-Fe2 O3 ultrafine nanorod arrays, Adv. Mater. 17,2005,2320.

    Article  Google Scholar 

  18. McEvoy, A.J., Etman, M. and Memming, R., Interface charging and intercalation effects on d-band transition-metal diselenide photoelectrodes, J. Electroanal. Chem. 190, 1985, 225.

    Article  Google Scholar 

  19. Kudo, A., Omori, K. and Kato, H., A novel aqueous process for preparation of crystal formcontrolled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121, 1999, 11459.

    Article  Google Scholar 

  20. Sayama, K., Nomura, A., Arai, T., Sugita, T., Abe, R., Yanagida, M., Oi, T., Iwasaki, Y., Abe, Y. and Sugihara, H., Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment, J. Phys. Chem. B 110, 2006, 11352.

    Article  Google Scholar 

  21. Bamwenda, G.R. and Arakawa, H., The photoinduced evolution of O2 and H2 from a WO3 aqueous suspension in the presence of Ce4+ /Ce3+ , Solar Energy Mater. Solar Cells 70, 2001, 1.

    Article  Google Scholar 

  22. Ye, J.H., Zou, Z.G., Oshikiri, M., Matsushita, A., Shimoda, M., Imai, M. and Shishido, T., A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation, Chem. Phys. Lett. 356, 2002, 221.

    Article  Google Scholar 

  23. Zou, Z.G., Ye, J.H. and Arakawa, H., Photocatalytic properties and electronic structure of a novel series of solid photocatalysts, Bi2 RNbO7 (R = Y, rare earth), Topics Catal. 22, 2003, 107.

    Google Scholar 

  24. Wang, D., Zhou, Z.G. and Ye, J.H., A new spinel-type photocatalyst BaCr2 O4 for H2 evolution under UV and visible light irradiation, Chem. Phys. Lett. 373, 2003, 191.

    Article  Google Scholar 

  25. Oshikiri, M. and Boero, M., Water molecule adsorption properties on the BiVO4 (100) surface, J. Phys. Chem. B 110, 2006, 9188.

    Article  Google Scholar 

  26. Takata, T., Furumi, Y., Shinohara, K., Tanaka, A., Hara, M., Kondo, J.N. and Domen, K., Photocatalytic decomposition of water on spontaneously hydrated layered perovskites, Chem. Mater. 9, 1997, 1063.

    Article  Google Scholar 

  27. Gr ätzel, M., Photoelectrochemical cells, Nature 414, 2001, 338.

    Article  Google Scholar 

  28. Santato, C., Ulmann, M. and Augustynski, J., Photoelectrochemical properties of nanostructured tungsten trioxide films, J. Phys. Chem. B 105, 2001, 936.

    Article  Google Scholar 

  29. Khan, S.U.M. and Akikusa, J., Photoelectrochemical splitting of water at nanocrystalline nFe2 O3 thin-film electrodes, J. Phys. Chem. B 103, 1999, 7184.

    Article  Google Scholar 

  30. Cesar, I., Kay, A., Martinez, J.A.G. and Gr ätzel, M., Translucent thin film Fe2 O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping, J. Am. Chem. Soc. 128, 2006, 4582.

    Article  Google Scholar 

  31. Khaselev, O. and Turner, J.A., A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280, 1998, 425.

    Article  Google Scholar 

  32. Licht, S., Multiple band gap semiconductor/electrolyte solar energy conversion, J. Phys. Chem. B 105, 2001, 6281.

    Article  Google Scholar 

  33. Licht, S., Wang, B., Mukerji, S., Soga, T., Umeno, M. and Tributsch, H., Efficient solar water splitting, exemplified by RuO2 -catalyzed AlGaAs/Si photoelectrolysis, J. Phys. Chem. B 104, 2000,8920.

    Article  Google Scholar 

  34. Algora, C., Ortiz, E., Rey-Stolle, I., Diaz, V., Pena, R., Andreev, V.M., Khvostikov, V.P. and Rumyantsev, V.D., A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns, IEEE Trans. Electron Devices 48, 2001, 840.

    Article  Google Scholar 

  35. Rocheleau, R.E., Miller, E.L. and Misra, A., High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes, Energy & Fuels 12, 1998, 3.

    Article  Google Scholar 

  36. Miller, E.L., Rocheleau, R.E. and Deng, X.M., Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production, Int. J. Hydrogen Energy 28, 2003, 615.

    Article  Google Scholar 

  37. Miller, E.L., Paluselli, D., Marsen, B. and Rocheleau, R.E., Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes, Solar Energy Mater. Solar Cells 88, 2005, 131.

    Article  Google Scholar 

  38. Nanu, M., Schoonman, J. and Goossens, A., Inorganic nanocomposites of n- and p-type semiconductors: A new type of three-dimensional solar cell, Adv. Mater. 16, 2004, 453.

    Article  Google Scholar 

  39. Nanu, M., Schoonman, J. and Goossens, A., Solar-energy conversion in TiO2 /CuInS2 nanocomposites, Adv. Funct. Mater. 15, 2005, 95.

    Article  Google Scholar 

  40. Maruska, H.P. and Ghosh, A.K., Transition-metal dopants for extending the response of titanate photoelectrolysis anodes, Solar Energy Mater. 1, 1979, 237.

    Article  Google Scholar 

  41. Borgarello, E., Kiwi, J., Gr ätzel, M., Pelizzetti, E. and Visca, M., Visible-light induced water cleavage in colloidal solutions of chromium-doped titanium-dioxide particles, J. Am. Chem. Soc. 104, 1982, 2996.

    Google Scholar 

  42. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293, 2001, 269.

    Article  Google Scholar 

  43. Sakthivel, S. and Kisch, H., Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chem. Int. Ed. 42, 2003, 4908.

    Article  Google Scholar 

  44. Sakthivel, S. and Kisch, H., Photocatalytic and photoelectrochemical properties of nitrogendoped titanium dioxide, Chem. Phys. Chem. 4, 2003, 487.

    Google Scholar 

  45. Chen, X.B., Lou, Y.B., Samia, A.C.S., Burda, C. and Gole, J.L., Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder, Adv. Funct. Mater. 15, 2005, 41.

    Article  Google Scholar 

  46. Enache, C.S., Schoonman, J. and van de Krol, R., The photoresponse of iron- and carbondoped TiO2 (anatase) photoelectrodes, J. Electroceram. 13, 2004, 177.

    Article  Google Scholar 

  47. Enache, C.S., Schoonman, J. and van de Krol, R., Addition of carbon to anatase TiO2 by n-hexane treatment - Surface or bulk doping?, Appl. Surf. Sci. 252, 2006, 6342.

    Article  Google Scholar 

  48. Irie, H., Watanabe, Y. and Hashimoto, K., Carbon-doped anatase TiO2 powders as a visiblelight sensitive photocatalyst, Chem. Lett. 32, 2003, 772.

    Article  Google Scholar 

  49. Lindgren, T., Mwabora, J.M., Avendano, E., Jonsson, J., Hoel, A., Granqvist, C.G. and Lindquist, S.E., Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering, J. Phys. Chem. B 107, 2003, 5709.

    Article  Google Scholar 

  50. Lindgren, T., Lu, J., Hoel, A., Granqvist, C.G., Torres, G.R. and Lindquist, S.E., Photoelectrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte, Solar Energy Mater. Solar Cells 84, 2004, 145.

    Article  Google Scholar 

  51. Goossens, A., Maloney, E.L. and Schoonman, J., Gas-phase synthesis of nanostructured anatase TiO2 , Chem. Vapor Depos. 4, 1998, 109.

    Article  Google Scholar 

  52. van ’t Spijker, J.C., Maloney, E.L., Schoonman, J. and van de Krol, R., Unusually high photocurrents in anatase TiO2 thin films with fractal morphologies, Presented at the 16th International Conference on Photochemical Conversion and Storage of Solar Energy (IPS-16), Uppsala, Sweden, 2006.

    Google Scholar 

  53. Santato, C., Ulmann, M. and Augustynski, J., Enhanced visible light conversion efficiency using nanocrystalline WO3 films, Adv. Mater. 13, 2001, 511.

    Article  Google Scholar 

  54. Enache, C.S., Schoonman, J. and Van de Krol, R., Manuscript in preparation.

    Google Scholar 

  55. Sato, J., Saito, N., Nishiyama, H. and Inoue, Y., Photocatalytic water decomposition by RuO2 loaded antimonates, M2 Sb2 O7 (M = Ca, Sr), CaSb2 O6 and NaSbO3 , with d(10) configuration, J. Photochem. Photobiol. A 148, 2002, 85.

    Article  Google Scholar 

  56. Kato, H. and Kudo, A., Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K), J. Phys. Chem. B 105, 2001, 4285.

    Article  Google Scholar 

  57. Yin, J., Zou, Z.G. and Ye, J.H., Photophysical and photocatalytic properties of MIn0.5 Nb0.5 O3 (M = Ca, Sr, and Ba), J. Phys. Chem. B 107, 2003, 61.

    Article  Google Scholar 

  58. Zou, Z.G., Ye, J.H., Sayama, K. and Arakawa, H., Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414, 2001, 625.

    Article  Google Scholar 

  59. Maeda, K., Teramura, K., Lu, D.L., Takata, T., Saito, N., Inoue, Y. and Domen, K., Photocatalyst releasing hydrogen from water - Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight, Nature 440, 2006, 295.

    Article  Google Scholar 

  60. Kim, J., Hwang, D.W., Kim, H.G., Bae, S.W., Lee, J.S., Li, W. and Oh, S.H., Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts, Topics Catal. 35, 2005, 295.

    Article  Google Scholar 

  61. Kudo, A., Kato, H. and Nakagawa, S., Water splitting into H2 and O2 on new Sr2 M2 O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: Factors affecting the photocatalytic activity, J. Phys. Chem. B 104, 2000, 571.

    Article  Google Scholar 

  62. Wang, D.F., Zou, Z.G. and Ye, J.H., A noval Zn-doped Lu2 O3 /Ga2 O3 composite photocatalyst for stoichiometric water splitting under UV light irradiation, Chem. Phys. Lett. 384, 2004, 139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Van de Krol, R., Schoonman, J. (2008). Photo-Electrochemical Production of Hydrogen. In: Hanjalić, K., Van de Krol, R., Lekić, A. (eds) Sustainable Energy Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6724-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6724-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6723-5

  • Online ISBN: 978-1-4020-6724-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics