Skip to main content

Structure And Dynamics Of Nucleic Acids

  • Chapter
Book cover NMR in Biological Systems

Part of the book series: Focus on Structural Biology ((FOSB,volume 6))

  • 2464 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

9.1 Further Reading

  • J. D. Watson and F. H. C. Crick, Molecular Structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature (London) 171, 737–738 (1953).

    Article  CAS  Google Scholar 

  • J. D. Watson and F. H. C. Crick, Genetical implications of the structure of deoxyribonucleic acid, Nature (London) 171, 964–967 (1953).

    Google Scholar 

9.2 Books

  • W. Saenger, Principles of Nucleic Acid Structure, Springer, New York, Berlin, Heidelberg, and Tokyo, 315 (1984).

    Google Scholar 

  • T.M. Jovin, K. Rippe, N.B. Ramsing, R. Klement, W. Elhorst, and M. Vojtiskova, Structure and Methods, Vol. 3: DNA and RNA (R.H. Sarma and M.H. Sarma, eds.), Adenine Press, Schenectady, New York, 155 (1990).

    Google Scholar 

  • T.L. James (ed.) Methods in Enzymology. Nuclear Magnetic Resonance and Nucleic Acids, Academic Press, San Diego (1995).

    Google Scholar 

  • V.N. Soyfer, and V.N. Potaman, Triple-Helical Nucleic Acids, Springer - Verlag New York (1996).

    Google Scholar 

  • V.A. Bloomfield, D. Crothers, I. Tinoco and J. Hearst, Nucleic Acids: Structures, Properties and Functions, University Science Books (2000).

    Google Scholar 

  • David L. Nelson, David L. Nelson and Michael M. Cox, Lehninger Principles of Biochemistry, 3rd BK & CD edition, W.H. Freeman & Company (2000).

    Google Scholar 

  • B. Lewin, Genes, 7th edition, Oxford University Press (2000).

    Google Scholar 

  • Lubert Stryer, Jeremy M. Berg and John L. Tymoczko, Biochemistry, 5th Ed. W.H.Freeman & Co Ltd. (2002).

    Google Scholar 

9.3 DNA Structure

  • G. Lipari and A. Szabo, Nuclear magnetic resonance relaxation in nucleic acid fragments: models for internal motion, Biochemistry 20, 6250–6256 (1981).

    Google Scholar 

  • J. Feigon, J.M. Wright, W.A. Denny, W. Leupin, and D.R. Kearns, Use of two dimensional NMR in the study of a double-stranded DNA decamer, J. Am. Chem. Soc. 104, 5540–5541 (1982).

    Article  CAS  Google Scholar 

  • D.J. Patel. A. Pardi and K. Itakura, DNA conformation, dynamics and interactions in solution, Science 216, 581–590 (1982).

    Article  CAS  Google Scholar 

  • D.R. Hare, D.E. Wemmer, S.H. Chou, G. Drobny and B.R. Reid, Assignment of the non-exchangeable proton resonances of d(C-G-C-G-A-T-T-C-G-C-G) using two dimensional nuclear magnetic resonance methods, J. Mol. Biol. 171, 319–336 (1983).

    Article  CAS  Google Scholar 

  • D.J. Patel, S.A. Kozlowski, S. Ikura, K. Bhatt and D.R. Hare, NMR studies of DNA conformation and dynamics in solution, Cold Spring Harb. Symp. Quant. Biol. 47, 197–206 (1983).

    Google Scholar 

  • K.V.R. Chary and S. Mody, Analysis of intrasugar interproton NOESY cross-peaks as an aid to determine sugar geometries in DNA fragments, FEBS Lett. 233, 319 (1988).

    Article  CAS  Google Scholar 

  • K.V.R. Chary, S. Mody, R.V. Hosur, G. Govil, C. Chen and H.T. Miles, Quantification of DNA structure from NMR data: Conformation of d-ACATCGATGT, Biochemistry 28, 5240 (1989).

    Article  CAS  Google Scholar 

  • B.R. Reid, K. Banks, P. Flynn and W. Nerdal, NMR distance measurements in DNA duplexes: sugars and bases have the same correlation times, Biochemistry 28, 10001–10007 (1989).

    Article  CAS  Google Scholar 

  • K.V.R. Chary, DNA structure from NMR data, Magnetic Resonance-Current Trends; Eds. C.L. Khetrapal and G. Govil, Narosa Publishing House, New Delhi, 71–104 (1991).

    Google Scholar 

  • S.G. Kim, L.J. Lin and B.R. Reid, Determination of nucleic acid backbone conformation by 1 H NMR, Biochemistry 31, 3564–3574 (1992).

    Article  CAS  Google Scholar 

  • K. Gehring, J.L. Leroy and M. Gueron. A tetrameric DNA structure with protonated cytosine-cytosine base pair, Nature 363, 561–565 (1993).

    Article  CAS  Google Scholar 

  • R. Nibedita, R.A. Kumar, A. Majumdar, R.V. Hosur, G. Govil, K. Majumder and V.S. Chauhan, Solution structure of GCAAT recognition motif by 2D NMR, spectral simulation, molecular modelling, and distance geometry calculations, Biochemistry 32, 9053–9064 (1993).

    Article  CAS  Google Scholar 

  • O.Y. Federof, B.R. Reid, and V.P. Chuprina, Sequence dependence of DNA in solution, J. Mol. Biol. 235, 325–330. (1994).

    Article  Google Scholar 

  • S.R. Bhaumik and K.V.R. Chary, Molecular dynamics and mechanics calculations on a DNA duplex with A + -C, G-T and T-C mispairs, J. Bio. Struct. Dynamics 3, 199–206 (2002).

    Google Scholar 

9.4 Parallel Stranded DNA

  • N. Pattabiraman, Can the double helix be parallel? Biopolymers 25, 1603–1606 (1986).

    Article  CAS  Google Scholar 

  • J.H. van de Sande, N.B. Ramsing, M.W. Germann, W. Elhorst, B.W. Kalisch, V.E. Kitzing, R.T. Pon, R.C. Clegg and T.M. Jovin, Parallel stranded DNA Science 241, 551–557 (1988).

    Article  CAS  Google Scholar 

  • C. Otto, K. Rippe, K. Thomas, N.B. Ramsing and T.M. Jovin, The hydrogen-bonding structure in parallel-stranded duplex DNA is reverse Watson-Crick, Biochemistry 30, 3062–3069 (1991).

    Article  CAS  Google Scholar 

  • G. Raghunathan, H.T. Miles and V. Sasisekharan, Parallel nucleic acid helices with Hoogsteen base pairing: Symmetry and structure Biopolymers, 34, 1573–1581 (1994).

    Article  CAS  Google Scholar 

  • V. Rani Parvathy, S.R. Bhaumik, K.V.R. Chary., G. Govil, K. Liu, B.H. Frank and H.T. Miles, NMR structure of a parallel-stranded DNA duplex at atomic resolution, Nucleic Acids Res. 30, 1500–1511 (2002).

    Article  CAS  Google Scholar 

9.5 Triple-Helical Nucleic Acids

  • G. Felsenfield, D.R. Davies, and A. Rich, Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 79, 2023–2024 (1957).

    Article  Google Scholar 

  • J.S. Lee, D.A. Johnson, and A.R. Morgan, Complexes formed by (pyrimidine)n. (purine)n DNAs on lowering the pH are three-stranded, Nucleic Acids Res., 6, 3073–3091 (1979).

    Article  CAS  Google Scholar 

  • N.B. Ramsing, K. Rippe, and T.M. Jovin, Helix-coil transition of parallel-stranded DNA. Thermodynamics of hairpin and linear duplex oligonucleotides, Biochemistry, 28, 9528–9535 (1989).

    Article  CAS  Google Scholar 

  • S.M. Mirkin, and M.D. Frank-Kamenetskii, H-DNA and related structures, Ann. Rev. Biophys. Biomol. Struct. 23, 541–576 (1994).

    Article  CAS  Google Scholar 

  • S.R. Bhaumik, K.V.R. Chary, G. Govil, K. Liu, and H.T. Miles, NMR characterisation of a triple stranded complex formed by homo-purine and homo-pyrimidine DNA strands at 1:1 molar ratio and acidic pH, Nucleic Acids Res. 23, 4116–4121 (1995).

    Article  CAS  Google Scholar 

  • V.N. Soyfer, and V.N. Potaman, Triple-Helical Nucleic Acids, Springer - Verlag New York (1996).

    Google Scholar 

  • S.R. Bhaumik, K.V.R. Chary, G. Govil, K. Liu, and H.T. Miles, Homopurine and Homopyrimidine strands complementary in parallel orientation form an antiparallel duplex at neutral pH with A-C, G{\-T and T-C mismatched base pair}, Biopolymers 41, 773–785 (1997).

    Article  CAS  Google Scholar 

  • S.R. Bhaumik, K.V.R. Chary, G. Govil, Molecular mechanics calculations on a triple stranded DNA involving C + .G-T and T.A + -C mismatched base triples, J. Biomol. Structure and Dynamics 16, 527–534 (1998).

    CAS  Google Scholar 

  • S.R. Bhaumik, K.V.R. Chary, G. Govil, L. Keliang, and H.T. Miles, A novel palindromic triple stranded structure formed by homopyrimidine dodecamer d-CTTCTCCTCTTC and homopurine hexamer d-GAAGAG, Nucleic Acids Res. 26, 2981–2988 (1998).

    Article  CAS  Google Scholar 

9.6 Isotope labelling of Nucleic Acids

  • D.P. Zimmer, and D.M. Crothers, NMR of enzymatically synthesized uniformly 13C/15 N-labeled DNA oligonucleotides, Proc. Natl. Acad. Sci., USA 92, 3091–3095 (1995).

    Article  CAS  Google Scholar 

  • D.E. Smith, J. Su, and F.M. Jucker, Efficient enzymatic synthesis of 13C, 15 N-labeled DNA for NMR studies, J. Biomol. NMR 10, 245–253 (1997).

    Article  CAS  Google Scholar 

  • J.E. Masse, P. Bortmann, T. Dieckmann, and J. Feigon, Simple, efficient protocol for enzymatic synthesis of uniformly 13C, 15 N-labeled DNA for heteronuclear NMR studies, Nucleic Acids Res. 26, 2618–2624 (1998).

    Google Scholar 

  • G. Mer, and W.J. Chazin, Enzymatic synthesis of region-specific isotope-labeled DNA oligomers for NMR analysis, J. Am. Chem. Soc. 120, 607–608 (1998).

    Article  CAS  Google Scholar 

  • R. Sunita, B.J Rao and K.V.R. Chary, A novel approach for uniform 13>C and 15 N labeling of DNA for NMR studies, Biochem. Biophys. Res. Com. 290, 928–932 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Chary, K., Govil, G. (2008). Structure And Dynamics Of Nucleic Acids. In: Chary, K., Govil, G. (eds) NMR in Biological Systems. Focus on Structural Biology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6680-1_7

Download citation

Publish with us

Policies and ethics