Skip to main content

Photonic Astronomy and Quantum Optics

  • Chapter
High Time Resolution Astrophysics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 351))

Abstract

Quantum optics potentially offers an information channel from the Universe beyond the established ones of imaging and spectroscopy. All existing cameras and all spectrometers measure aspects of the first-order spatial and/or temporal coherence of light. However, light has additional degrees of freedom, manifest in the statistics of photon arrival times, or in the amount of photon orbital angular momentum. Such quantum-optical measures may carry information on how the light was created at the source, and whether it reached the observer directly or via some intermediate process. Astronomical quantum optics may help to clarify emission processes in natural laser sources and in the environments of compact objects, while high-speed photon-counting with digital signal handling enables multi-element and long-baseline versions of the intensity interferometer. Time resolutions of nanoseconds are required, as are large photon fluxes, making photonic astronomy very timely in an era of large telescopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov EB, Golubev YuM, Lomakin AV, Noskin VA (1983) Intensity-fluctuation spectroscopy of optical fields with non-Gaussian statistics. Sov Phys Usp 26:643–663 = Usp Fiz Nauk 140:547–582

    Google Scholar 

  2. Alexander G (2003) Bose-Einstein and Fermi-Dirac interferometry in particle physics. Rep Progr Phys 66:481–522

    Article  ADS  Google Scholar 

  3. Bachor HA, Ralph TC (2004) A Guide to Experiments in Quantum Optics, Wiley-VCH, /Weinheim

    Google Scholar 

  4. Barbieri C, Dravins D, Occhipinti T, Tamburini F, Naletto G, Da Deppo V, Fornasier S, D’Onofrio M, Fosbury RAE, Nilsson R, Uthas H (2006a) Astronomical applications of quantum optics for extremely large telescopes. J Mod Opt, in press

    Google Scholar 

  5. Barbieri C, Naletto G, Tamburini F, Occhipinti T, Giro E, D’Onofrio M (2006b) From QuantEYE to AquEYE – Instrumentation for astrophysics on its shortest timescales. This volume

    Google Scholar 

  6. Becker W (2005) Advanced Time-Correlated Single Photon Counting Techniques. Springer, Berlin

    Google Scholar 

  7. Begelman MC (2001) Super-Eddington atmospheres that do not blow away. ApJ 551:897–906

    Article  ADS  Google Scholar 

  8. Begelman MC (2006) Photon bubbles and the vertical structure of accretion disks. ApJ 643:1065–1080

    Article  ADS  Google Scholar 

  9. Bergman J, Carozzi T, Karlsson R (2003) Multipoint antenna device. International Patent Publication WO 03/007422

    Google Scholar 

  10. Beth RA (1936) Mechanical Detection and Measurement of the Angular Momentum of Light. Phys Rev 50:115–125

    Article  ADS  Google Scholar 

  11. Boal DH, Gelbke CK, Jennings BK (1990) Intensity interferometry in subatomic physics. Rev Mod Phys 62:553–602

    Article  ADS  Google Scholar 

  12. Bowen IS (1927) The origin of the chief nebular lines. PASP 39:295–297

    Article  ADS  Google Scholar 

  13. Bowen IS (1947) Excitation by line coincidence. PASP 59:196–198

    Article  ADS  Google Scholar 

  14. Burdyuzha VV, Shelepin LA (1990) The possibility of an X-ray recombination laser in hydrogen-like ions for the conditions of accreting neutron stars. AdSpR 10:163–165

    ADS  Google Scholar 

  15. Calvo GF, Picón A, Bagan E (2006) Quantum field theory of photons with orbital angular momentum. Phys Rev A 73, id 013805 (10 pp)

    Google Scholar 

  16. Cao H (2003) Lasing in random media. Waves Random Media 13:R1–R39

    Article  ADS  Google Scholar 

  17. Carozzi TD, Bergman JES (2006) Real irreducible sesquilinear-quadratic tensor concomitants of complex bivectors. J Math Phys 47, id 032903 (7 pp)

    Google Scholar 

  18. Carozzi T, Karlsson R, Bergman J (2000) Parameters characterizing electromagnetic wave polarization. Phys Rev E 61:2024–2028

    Article  ADS  Google Scholar 

  19. Castor JI, Nussbaumer H (1972) On the excitation of C III in Wolf-Rayet envelopes. MNRAS 155:293–304

    ADS  Google Scholar 

  20. Chu, B (1991) Laser Light Scattering. Basic Principles and Practice, 2nd ed. (1991) Academic Press, Boston

    Google Scholar 

  21. Cooper J, Ballagh RJ, Burnett K, Hummer DG (1982) On redistribution and the equations for radiative transfer. ApJ 260:299–316

    Article  ADS  Google Scholar 

  22. Cox P, Martin-Pintado J, Bachiller R, Bronfman L, Cernicharo J, Nyman LÅ, Roelfsema PR (1995) Millimeter recombination lines towards η Carinae. A&A 295:L39–L42

    ADS  Google Scholar 

  23. Danchi WC, Tuthill PG, Monnier JD (2001) Near-infrared interferometric images of the hot inner disk surrounding the massive young star MWC 349A. ApJ 562:440–445

    Article  ADS  Google Scholar 

  24. Das Gupta S, Das Gupta SR (1991) Laser radiation in active amplifying media treated as a transport problem - Transfer equation derived and exactly solved. Ap&SS 184:77–142

    Article  MATH  ADS  Google Scholar 

  25. Degiorgio V, Lastovka JB (1971) Intensity-correlation spectroscopy. Phys Rev A 4:2033–2050

    Article  ADS  Google Scholar 

  26. DeNoyer LK, Dodd JG (1982) Detecting saturation in astrophysical masers. Bull AAS 14:638

    ADS  Google Scholar 

  27. Dravins D (1994) Astrophysics on its shortest timescales. ESO Messenger no 78:9–19

    ADS  Google Scholar 

  28. Dravins D, Lindegren L, Mezey E, Young AT (1997a) Atmospheric Intensity Scintillation of Stars. I. Statistical Distributions and Temporal Properties. PASP 109:173–207

    Article  ADS  Google Scholar 

  29. Dravins D, Lindegren L, Mezey E, Young AT (1997b) Atmospheric intensity scintillation of stars. II. Dependence on optical wavelength. PASP 109:725–737

    Article  ADS  Google Scholar 

  30. Dravins D, Lindegren L, Mezey E, Young AT (1998) Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures. PASP 110:610–633, erratum 110:1118

    Article  ADS  Google Scholar 

  31. Dravins D, Barbieri C, Da Deppo V, Faria D, Fornasier S, Fosbury RAE, Lindegren L, Naletto G, Nilsson R, Occhipinti T, Tamburini F, Uthas H, Zampieri L (2005) QuantEYE. Quantum Optics Instrumentation for Astronomy. OWL Instrument Concept Study. ESO doc OWL-CSR-ESO-00000–0162, 280 pp

    Google Scholar 

  32. Dravins D, Barbieri C, Fosbury RAE, Naletto G, Nilsson R, Occhipinti T, Tamburini F, Uthas H, Zampieri L (2006a) QuantEYE: The quantum optics instrument for OWL. In: Herbst T (ed) Instrumentation for Extremely Large Telescopes, MPIA spec publ 106, pp 85–91

    Google Scholar 

  33. Dravins D, Barbieri C, Fosbury RAE, Naletto G, Nilsson R, Occhipinti T, Tamburini F, Uthas H, Zampieri L (2006b) Astronomical quantum optics with extremely large telescopes. In: Whitelock P, Dennefeld M, Leibundgut B (eds) The Scientific Requirements for Extremely Large Telescopes, IAU Symp 232:502–505

    Google Scholar 

  34. Eichler D, Gedalin M, Lyubarsky Y. (2002) Coherent emission from magnetars. ApJ 578:L121–L124

    Article  ADS  Google Scholar 

  35. Elitzur M (1992) Astronomical Masers. ARA&A 30:75–112

    Article  ADS  Google Scholar 

  36. Ershov AA, Kuzmin AD (2005) Detection of giant pulses in pulsar PSR J1752+235. A&A 443:593–597

    Article  ADS  Google Scholar 

  37. Evans NJ, Hills RE, Rydbeck OEH, Kollberg E (1972) Statistics of the radiation from astronomical masers. Phys Rev A 6:1643–1647

    Article  ADS  Google Scholar 

  38. Fang LZ (1981) Stimulated recombination emission from rapidly cooling regions in an accretion disc and its application to SS 433. MNRAS 194:177–185

    ADS  Google Scholar 

  39. Ferland GJ (1993) A masing [Fe XI] line. ApJS 88:49–52

    Article  ADS  Google Scholar 

  40. Florescu L, John S (2004) Theory of photon statistics and optical coherence in a multiple–scattering random-laser medium. Phys Rev E 69, id. 046603 (16 pp)

    Google Scholar 

  41. Foo G, Palacios DM, Swartzlander GA (2005) Optical vortex coronagraph. Opt Lett 30:3308–3310

    Article  ADS  Google Scholar 

  42. Fox M (2006) Quantum Optics. An Introduction. Oxford University Press, Oxford

    MATH  Google Scholar 

  43. Gahm GF, Lindgren B, Lindroos KP (1977) A compilation of fluorescent molecular lines originating in or around stellar objects with strong atomic emission lines. A&AS 27:277–283

    ADS  Google Scholar 

  44. Ghosh TK, Das AK, Mukherjee TK, Mukherjee PK (1995) The 2p 5 31 configurations of highly stripped Ne-like ions: Possibility of X-ray laser emission. ApJ 452:949–953

    Article  ADS  Google Scholar 

  45. Gil J (1985) Fluctuations of pulsar emission with sub-microsecond time-scales. Ap&SS 110:293–296

    Article  ADS  Google Scholar 

  46. Gil J, Melikidze, G I (2005) Angular beaming and giant subpulses in the Crab pulsar. A&A 432:L61–L65

    Article  ADS  Google Scholar 

  47. Glauber RJ (1963a) Photon correlations. Phys Rev Lett 10:84–86

    Article  ADS  MathSciNet  Google Scholar 

  48. Glauber RJ (1963b) The quantum theory of optical coherence. Phys Rev 130:2529–2539

    Article  ADS  MathSciNet  Google Scholar 

  49. Glauber RJ (1963c) Coherent and incoherent states of the radiation field. Phys Rev 131:2766–2788

    Google Scholar 

  50. Glauber RJ (1965) Optical coherence and photon statistics. In: DeWitt C, Blandin A, Cohen-Tannoudji C (eds) Quantum Optics and Electronics, Gordon and Breach, New York, pp 65–185

    Google Scholar 

  51. Glauber RJ (1970) Quantum theory of coherence. In Kay SM, Maitland A (eds) Quantum Optics, Academic Press, London, pp 53–125

    Google Scholar 

  52. Goodman JW (1985) Statistical Optics. Wiley, New York

    Google Scholar 

  53. Gordon MA, Holder BP, Jisonna LJ, Jorgenson RA, Strelnitski VS (2001) 3 year monitoring of millimeter-wave radio recombination lines from MWC 349. ApJ 559:402–418

    Article  ADS  Google Scholar 

  54. Greenhouse MA, FeldmanU, Smith HA, Klapisch M, Bhatia AK, Bar-Shalom A (1993) Infrared coronal emission lines and the possibility of their laser emission in Seyfert nuclei. ApJS 88:23–48; erratum 99:743 (1995)

    Article  ADS  Google Scholar 

  55. Hanbury Brown R (1974) The Intensity Interferometer. Taylor & Francis, London

    Google Scholar 

  56. Hanbury Brown R (1985) Photons, Galaxies and Stars (selected papers). Indian Academy of Sciences, Bangalore

    Google Scholar 

  57. Hanbury Brown R (1991) Boffin. A Personal Story of the Early Days of Radar, Radio Astronomy and Quantum Optics. Adam Hilger, Bristol

    Google Scholar 

  58. Hanbury Brown R, Twiss RQ (1956a) Correlation between photons in two coherent beams of light. Nature 177:27–29

    Article  Google Scholar 

  59. Hanbury Brown R, Twiss RQ (1956b) A test of a new type of stellar interferometer on Sirius. Nature 178:1046–1048

    Article  ADS  Google Scholar 

  60. Hanbury Brown R, Twiss RQ (1958) Interferometry of the intensity fluctuations in light III. Applications to astronomy. Proc Roy Soc London Ser A 248:199–221

    Article  ADS  Google Scholar 

  61. Hanbury Brown R, Davis J, Allen RL (1967a) The stellar interferometer at Narrabri Observatory – I. A description of the instrument and the observational procedure. MNRAS 137:375–392

    ADS  Google Scholar 

  62. Hanbury Brown R, Davis J, Allen LR, Rome JM (1967b) The stellar interferometer at NarrabriObservatory – II. The angular diameters of 15 stars. MNRAS 137:393–417

    ADS  Google Scholar 

  63. Hankins TH, Kern JS, Weatherall JC, Eilek JA (2003) Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. Nature 422:141–143

    Article  ADS  Google Scholar 

  64. Hartman H, Johansson S (2000) Ultraviolet fluorescence lines of Fe II observed in satellite spectra of the symbiotic star RR Telescopii. A&A 359:627–634

    ADS  Google Scholar 

  65. Harwit M (2003) Photon orbital angular momentum in astrophysics. ApJ 597:1266–1270

    Article  ADS  Google Scholar 

  66. Hsieh SH, Spiegel EA (1976) The equations of photohydrodynamics. ApJ 207:244–252

    Article  ADS  MathSciNet  Google Scholar 

  67. Hughes AJ, Jakeman E, Oliver CJ, Pike ER (1973) Photon-correlation spectroscopy: Dependence of linewidth error on normalization, clip level, detector area, sample time and count rate. J Phys A: Math Nucl Gen 6:1327–1336

    Article  ADS  Google Scholar 

  68. Jakeman E (1970) Statistical accuracy in the digital autocorrelation of photon counting fluctuations. J Phys A: Gen Phys 3:L55–L59

    Article  ADS  Google Scholar 

  69. Jakeman E (1972) The effect of heterodyne detection on the statistical accuracy of optical linewidth measurements. J Phys A: Gen Phys 5:L49–L52; corrigendum 5:1738

    Article  ADS  Google Scholar 

  70. Jefferies JT (1971) Population inversion in the outer layers of a radiating gas. A&A 12:351–362

    ADS  Google Scholar 

  71. Jenet FA, Anderson SB, Prince TA (2001) The first detection of coherent emission from radio pulsars. ApJ 558:302–308

    Article  ADS  Google Scholar 

  72. Johansson S, Letokhov VS (2002) Laser action in a gas condensation in the vicinity of a hot star. Pis’ma Zh Éksp Teor Fiz 75:591–594 = JETP Lett 75:495–498

    Google Scholar 

  73. Johansson S, Letokhov VS (2004a) Anomalous Fe II spectral effects and high H I Ly-alpha temperature in gas blobs near Eta Carinae. Pis’ma Astron Zh 30:67–73=Astron Lett 30:58–63; erratum 30:433

    Google Scholar 

  74. Johansson S, Letokhov VS (2004b) Astrophysical lasers operating in optical Fe II lines in stellar ejecta of Eta Carinae. A&A 428:497–509

    Article  ADS  Google Scholar 

  75. Johansson S, Letokhov VS (2005) Possibility of measuring the width of narrow Fe II astrophysical laser lines in the vicinity of Eta Carinae by means of Brown-Twiss-Townes heterodyne correlation interferometry. New Astron 10:361–369

    Article  ADS  Google Scholar 

  76. Johansson S, Letokhov VS (2006) Astrophysical lasers and nonlinear optical effects in space. New Astron Rev, submitted

    Google Scholar 

  77. Johansson S, Davidson K, Ebbets D, Weigelt G, Balick B, Frank A, Hamann F, Humphreys RM, Morse J, White R L (1996) Is there a dichromatic UV laser in Eta Carinae? In: Benvenuti P, Macchetto FD, Schreier EJ (eds) Science with the Hubble Space Telescope-II, Space Telescope Science Institute, Baltimore, pp 361–365

    Google Scholar 

  78. Kiesel H, Renz A, Hasselbach F (2002) Observation of Hanbury Brown–Twiss anticorrelations for free electrons. Nature 418: 392–394

    Article  ADS  Google Scholar 

  79. Klein RI, Arons J, Jernigan G, Hsu JJL (1996) Photon bubble oscillations in accretion-powered pulsars. ApJ 457:L85–L89

    Article  ADS  Google Scholar 

  80. Knight HS, Bailes M, Manchester RN, Ord SM, Jacoby BA (2006) Green Bank telescope studies of giant pulses from millisecond pulsars. ApJ 640:941–949

    Article  ADS  Google Scholar 

  81. Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10:1938–1945

    Article  ADS  Google Scholar 

  82. Kuzmin AD, Ershov AA (2004) Giant pulses in pulsar PSR B0031–07. A&A 427:575–579

    Article  ADS  Google Scholar 

  83. Labeyrie A, Lipson SG, Nisenson P (2006) An Introduction to Optical Stellar Interferometry. Cambridge Univ Press, Cambridge

    Google Scholar 

  84. Lavrinovich NN, Letokhov VS (1974) The possibility of the laser effect in stellar atmospheres. Zh Éksp Teor Fiz 67:1609–1620 = Sov Phys–JETP 40:800–805 (1975)

    ADS  Google Scholar 

  85. Lavrinovich NN, Letokhov VS (1976) Detection of narrow “laser” lines masked by spatially inhomogeneous broadening in radiation emitted from stellar atmospheres. Kvant Elektron 3:1948–1954 = Sov J Quantum Electron 6:1061–1064

    Google Scholar 

  86. Lawandy NM, Balachandran RM, Gomes ASL, Sauvain E (1994) Laser action in strongly scattering media. Nature 368:436–438

    Article  ADS  Google Scholar 

  87. Leach J, Padgett MJ, Barnett SM, Franke-Arnold S, Courtial V (2002) Measuring the orbital angular momentum of a single photon. Phys Rev Lett 88, id 257901 [4 pp]

    Google Scholar 

  88. Lee LC, Jokipii JR (1975) Strong scintillations in astrophysics. III - The fluctuations in intensity. ApJ 202:439–453

    Article  ADS  Google Scholar 

  89. Lekht EE, Rudnitskii GM, Franquelin O, Drouhin JP (1975) Statistical properties of the emission of OH maser sources. Pis’ma Astron Zh 1:29–32 = Sov Astron Lett 1:37–38

    ADS  Google Scholar 

  90. Lepri S, Cavalieri S, Oppo GL, Wiersma DS (2006) Statistical regimes of random laser fluctuations. Phys Rev E, submitted = arXiv:physics/0611059

    Google Scholar 

  91. Lerche I (1979a) Scintillations in astrophysics. I – An analytic solution of the second-order moment equation. ApJ 234:262–274

    Article  ADS  Google Scholar 

  92. Lerche I (1979b) Scintillations in astrophysics. II – An analytic solution of the fourth-order moment equation. ApJ 234:653–668

    Article  ADS  Google Scholar 

  93. Letokhov VS (1967) Generation of light by a scattering medium with negative resonance absorption. Zh Éksp Teor Fiz 53:1442–1452 = Sov Phys JETP 26:835–840 (1968)

    Google Scholar 

  94. Letokhov VS (2002) Astrophysical lasers. Kvant Elektron 32:1065–1079 = Quant Electr 32:1065–1079

    Article  ADS  Google Scholar 

  95. Lim TS, Chern JL, Otsuka K (2002) Higher-order photon statistics of single-mode laser diodes and microchip solid-state lasers. Opt Lett 27:2197–2199

    Article  ADS  Google Scholar 

  96. Lo, KY (2005) Mega-masers and galaxies. ARA&A 43:625–676

    Article  ADS  Google Scholar 

  97. Loudon R (1980) Non-classical effects in the statistical properties of light. Rep Prog Phys 43:913–949

    Article  ADS  MathSciNet  Google Scholar 

  98. Loudon R (2000) The Quantum Theory of Light, 3rd ed. Oxford Univ Press, Oxford

    MATH  Google Scholar 

  99. Lu Y, Zhang SN (2004) Maser mechanism of optical pulsations from anomalous X-ray pulsar 4U 0142+61. MNRAS 354:1201–1207

    Article  ADS  Google Scholar 

  100. Macháček M (1978) A quantum mechanical description of the transfer of radiation. I – The radiation processes. Bull Astron Inst Czechosl 29:268–277

    Google Scholar 

  101. Macháček M (1979) The quantum mechanical description of the transfer of radiation. II – The equation of transfer. Bull Astron Inst Czechosl 30:23–28

    Google Scholar 

  102. Mandel L, Wolf E (1995) Optical Coherence and Quantum Optics. Cambridge Univ Press, Cambridge

    Google Scholar 

  103. Menzel DH (1937) Physical processes in gaseous nebulae. I. ApJ 85:330–339

    Article  MATH  ADS  Google Scholar 

  104. Menzel DH (1970) Laser action in non-LTE atmospheres. In: Groth HG, Wellmann P (eds) Spectrum Formation in Stars with Steady-State Extended Atmospheres. Nat Bur Stds Spec Publ 332:134–137

    Google Scholar 

  105. Meystre P, Sargent M (1990) Elements of Quantum Optics. Springer, Berlin

    Google Scholar 

  106. Mishchenko EG (2004) Fluctuations of radiation from a chaotic laser below threshold. Phys Rev A 69, id 033802 [6 pp]

    Google Scholar 

  107. Mumma MJ, Buhl D, Chin G, Deming D, Espenak F, Kostiuk T (1981) Discovery of natural gain amplification in the 10-micrometer carbon dioxide laser bands on Mars - A natural laser. Science 212:45–49

    Article  ADS  Google Scholar 

  108. Naletto G, Barbieri C, Dravins D, Occhipinti T, Tamburini F, Da Deppo V, Fornasier S, D’Onofrio M, Fosbury RAE, Nilsson R, Uthas H, Zampieri L (2006) QuantEYE: A quantum optics instrument for extremely large telescopes. In: McLean IS, Iye M (eds) Ground-Based and Airborne Instrumentation for Astronomy. SPIE Proc 6269:635–643

    Google Scholar 

  109. Ofir A, Ribak EN (2006a) Offline, multidetector intensity interferometers – I. Theory. MNRAS 368:1646–1651

    Article  ADS  Google Scholar 

  110. Ofir A, Ribak EN (2006b) Offline, multidetector intensity interferometers – II. Implications and applications. MNRAS 368:1652–1656

    Article  ADS  Google Scholar 

  111. Ofir A, Ribak EN (2006c) Micro-arcsec imaging from the ground with intensity interferometers. In: Monnier JD, Danchi WC (eds) btAdvances in Stellar Interferometry. SPIE proc 6268:1181–1191

    Google Scholar 

  112. Ojaste J, Sapar A (1979) Statistics of photons and its recording. Publ Tartu Astrof Obs 47:93–102

    Google Scholar 

  113. Oliver CJ (1978) The extraction of spectral parameters in photon-correlation spectroscopy. Adv Phys 27:387–435

    Article  ADS  Google Scholar 

  114. Padgett M, Courtial J, Allen L (2004) Light’s orbital angular momentum. Phys Today 57(5):35–40

    Article  ADS  Google Scholar 

  115. Paschenko M, Rudnitskij GM, Slysh VI, Fillit R (1971) A measurement of the one-dimensional distribution function of the signal from some Galactic OH radio sources. Astr Tsirk No.626 [3 pp.]

    Google Scholar 

  116. Paterson C (2005) Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys Rev Lett 94, id 153901 [4 pp]

    Google Scholar 

  117. Peng J, Pradhan AK (1994) Laser action in far-infrared astrophysical sources ApJ 432:L123–L126

    Article  ADS  Google Scholar 

  118. Petrova SA (2004a) Toward explanation of microstructure in pulsar radio emission. A&A 417:L29–L32

    Article  ADS  Google Scholar 

  119. Petrova SA (2004b) On the origin of giant pulses in radio pulsars. A&A 424:227–236

    Article  ADS  Google Scholar 

  120. Phillips DT, Kleiman H, Davis SP (1967) Intensity-correlation linewidth measurement. Phys Rev 153:113–115

    Article  ADS  Google Scholar 

  121. Picinbono B, Bendjaballah C (2005) Characterization of nonclassical optical fields by photodetection statistics. Phys Rev A 71, id 013812 [12 pp]

    Google Scholar 

  122. Pike ER (1970) Optical spectroscopy in the frequency range 1–10 8 Hz. Rev Phys Techn 1:180–194

    Article  Google Scholar 

  123. Pike ER (1976) Photon correlation spectroscopy. In Smith RA (ed) Very High Resolution Spectroscopy. Academic Press, London, pp 51–73

    Google Scholar 

  124. Popov MV, Kuzmin AD, Ul’yanov OM, Deshpande AA, Ershov AA, Zakharenko VV, Kondratiev VI, Kostyuk SV, Losovskii BYa, Soglasnov VA (2006) Instantaneous radio spectra of giant pulses from the Crab pulsar from decimeter to decameter wavelengths. Astron Zh 83:630–637 = Astron Rep 50:562–568

    Google Scholar 

  125. Prendergast KH, Spiegel EA (1973) Photon bubbles. Comm Astrophys Space Phys 5:43–49

    ADS  Google Scholar 

  126. Robinson BJ, McGee RX (1967) OH Molecules in the interstellar medium. ARA&A 5:183–212

    Article  ADS  Google Scholar 

  127. Rohde PP, Ralph TC (2006) Modelling photo-detectors in quantum optics. J Mod Opt 53:1589–1603

    Article  MATH  ADS  Google Scholar 

  128. Quirrenbach A, Frink S, Thum C (2001) Spectroscopy of the peculiar emission line star MWC349. In Gull TR, Johansson S, Davidson K (eds) Eta Carinae and Other Mysterious Stars: The Hidden Opportunities of Emission Spectroscopy. ASP Conf Ser 242:183–186

    Google Scholar 

  129. Sakhibullin NA, ShimanskyVV (2000) Non-LTE effects for Na I lines in X-ray illuminated stellar atmospheres. Pis’ma Astr Zh 26:369–379 = Astron Lett 26:309–318

    Google Scholar 

  130. Saldin EL, Schneidmiller EA, Yurkov MV (1998) Statistical properties of radiation from VUV and X-ray free electron laser. Opt Comm 148:383–403.

    Article  ADS  Google Scholar 

  131. Saleh BA (1973) Statistical accuracy in estimating parameters of the spatial coherence function by photon counting techniques. J Phys A: Math Nucl Gen 6:980–986

    Article  ADS  Google Scholar 

  132. Saleh BA (1978) Photoelectron Statistics. Springer, Berlin

    Google Scholar 

  133. Saleh BEA, Cardoso MF (1973) The effect of channel correlation on the accuracy of photon counting digital autocorrelators. J Phys A: Math Nucl Gen 6:1897–1909

    Article  ADS  Google Scholar 

  134. Sapar A (1978) Transfer equation for the density matrix of phase space cell occupation number states. Publ Tartu Astrof Obs 46:17–32

    Google Scholar 

  135. Schmid HM (1989) Identification of the emission bands at λλ 6830, 7088. A&A 211:L31–L34

    Google Scholar 

  136. Schroeder CB (2002) Photon statistics of the SASE FEL. Nucl Instr Meth Phys Res A 483:499–503

    Article  ADS  Google Scholar 

  137. Schroeder CB, Pellegrini C, Chen P (2001) Quantum effects in high-gain free-electron lasers. Phys Rev E 64, id 056502 [10 pp]

    Google Scholar 

  138. Shaviv N (2005) Exceeding the Eddington limit. In: Humphreys R, Stanek K (eds) The Fate of the Most Massive Stars. ASP Conf Ser 332:183–189

    Google Scholar 

  139. Shearer A, Stappers B, O’Connor P, Golden A, Strom R, Redfern M, Ryan O (2003) Enhanced optical emission during Crab giant radio pulses. Science 301:493–495

    Article  ADS  Google Scholar 

  140. Smith HA (1969) Population inversions in ions of astrophysical interest. ApJ 158:371–383

    Article  ADS  Google Scholar 

  141. Smits JM, Stappers BW, Macquart JP, Ramachandran R, Kuijpers J (2003) On the search for coherent radiation from radio pulsars. A&A 405:795–801

    Article  ADS  Google Scholar 

  142. Soglasnov VA, Popov MV, Bartel N, Cannon W, Novikov AYu, Kondratiev VI, Altunin VI (2004) Giant pulses from PSR B1937+21 with widths ≤ 15 nanoseconds and T b ≥ 5 x 1039 K, the highest brightness temperature observed in the Universe. ApJ 616:439–451

    Google Scholar 

  143. Sonnabend G, Wirtz D, Vetterle V, Schieder R (2005) High-resolution observations of Martian non-thermal CO 2 near 10 μ with a new tuneable heterodyne receiver. A&A 435:1181–1184

    Article  ADS  Google Scholar 

  144. Sorokin PP, Glownia JH (2002) Lasers without inversion (LWI) in Space: A possible explanation for intense, narrow-band, emissions that dominate the visible and/or far-UV (FUV) spectra of certain astronomical objects. A&A 384:350–363

    Article  ADS  Google Scholar 

  145. Spaans M, Norman CA (1997) Hydrogen recombination line masers at the epochs of recombination and reionization. ApJ 488:27–34

    Article  ADS  Google Scholar 

  146. Spiegel EA (1976) Photohydrodynamic instabilities of hot stellar atmospheres. In: Cayrel R, Steinberg M (eds) Physique des Mouvements dans les Atmosphères Stellaires. Editions du CNRS, Paris, pp 19–50

    Google Scholar 

  147. Streater A, Cooper J, Rees DE (1988) Transfer and redistribution of polarized light in resonance lines. I – Quantum formulation with collisions. ApJ 335:503–515

    Article  ADS  Google Scholar 

  148. Strelnitski V (2002) The puzzle of natural lasers. In: Migenes V, Reid MJ (eds) Cosmic Masers: From Protostars to Blackholes, IAU Symp 206:479–481

    Google Scholar 

  149. Strelnitski V, Haas MR, Smith HA, Erickson EF, Colgan SWJ, Hollenbach DJ (1996a) Far-infrared hydrogen lasers in the peculiar star MWC 349A. Science 272:1459–1461

    Article  ADS  Google Scholar 

  150. Strelnitski VS, Ponomarev VO, Smith HA (1996b) Hydrogen masers. I. Theory and prospects. ApJ 470:1118–1133

    Article  ADS  Google Scholar 

  151. Strelnitski VS, Smith HA, Ponomarev VO (1996c) Hydrogen masers. II. MWC349A. ApJ 470:1134–1143

    Article  ADS  Google Scholar 

  152. Swartzlander GA (2001) Peering into darkness with a vortex spatial filter. Opt Lett 26:497–499

    Article  ADS  Google Scholar 

  153. Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C (2006) Overcoming the Rayleigh criterion limit with optical vortices. Phys Rev Lett 97, id 163903 [4 pp]

    Google Scholar 

  154. Treumann, RA (2006) The electron-cyclotron maser for astrophysical applications. Astron Astrophys Rev 13:229–315

    Article  ADS  Google Scholar 

  155. Uscinski BJ (1977) The Elements of Wave Propagation in Random Media. McGraw-Hill, New York

    Google Scholar 

  156. van der Molen KL, Mosk AP, Lagendijk A (2006) Intrinsic intensity fluctuations in random lasers. Phys Rev A 74, id 053808 [6 pp]

    Google Scholar 

  157. Vannucci G, Teich MC (1980) Computer simulation of superposed coherent and chaotic radiation. Appl Opt 19:548–553

    Article  ADS  Google Scholar 

  158. Varshni YP, Lam CS (1976) Laser action in stellar envelopes. Ap&SS 45:87–97

    Article  ADS  Google Scholar 

  159. Varshni YP, Nasser RM (1986) Laser action in stellar envelopes. II – He I. Ap&SS 125:341–360

    Article  ADS  Google Scholar 

  160. Verga AD (1982) Irreversible thermodynamics in a radiating fluid. ApJ 260:286–298

    Article  ADS  Google Scholar 

  161. Weatherall JC (1998) Pulsar radio emission by conversion of plasma wave turbulence: Nanosecond time structure. ApJ 506:341–346

    Article  ADS  Google Scholar 

  162. West DK (1968) [Conference discussion on possible laser action in C III λ 1909 Å line of γ Vel]. In: Gebbie KB, Thomas RN (eds) Wolf-Rayet Stars. Nat Bur Stds Spec Publ 307:221–227

    Google Scholar 

  163. Wiersma D (2000) Laser physics: The smallest random laser. Nature 406:132–133

    Article  Google Scholar 

  164. Wilkinson PN, Kellermann KI, Ekers RD, Cordes JM, Lazio TJW (2004) The exploration of the unknown. New Astron Rev 48:1551–1563

    Article  ADS  Google Scholar 

  165. Wu YC (1992) Statistical nature of astrophysical maser radiation for linear masers. Can J Phys 70:432–440; erratum 71:403 (1993)

    ADS  Google Scholar 

  166. Wu YC (1993) Nonlinear optics in celestial natural maser-laser environment. Ap&SS 209:113–121

    Article  ADS  Google Scholar 

  167. Yabashi M, Tamasaku K, Ishikawa T (2004) Intensity interferometry for the study of X-ray coherence. Phys Rev A 69, id 023813 [9 pp]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dravins, D. (2008). Photonic Astronomy and Quantum Optics. In: Phelan, D., Ryan, O., Shearer, A. (eds) High Time Resolution Astrophysics. Astrophysics and Space Science Library, vol 351. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6518-7_6

Download citation

Publish with us

Policies and ethics