Skip to main content

A Novel Relationship Between Creatine Transport at the Blood-Brain and Blood-Retinal Barriers, Creatine Biosynthesis, And its Use for Brain and Retinal Energy Homeostasis

  • Chapter
Creatine and Creatine Kinase in Health and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 46))

Abstract

Evidence is increasing that the creatine/phosphocreatine shuttle system plays an essential role in energy homeostasis in the brain and retina to ensure proper development and function. Thus, our understanding of the mechanism of creatine supply and creatine usage in the brain and retina and of creatine supplementation in patients with creatine deficiency syndromes is an important step towards improved therapeutic strategies for brain and retinal disorders. Our recent research provides novel molecular-anatomical evidence that,(i) at the blood-brain barrier and the inner blood-retinal barrier, the creatine transporter (CRT/SLC6A8) functions as a major pathway for supplying creatine to the brain and retina, and that (ii) local creatine is preferentially synthesized in the glial cells, e.g., oligodendrocytes, astrocytes, and Müller cells, in the brain and retina. Thus, the blood-brain barrier and inner blood-retinal barrier play important roles not only in supplying energy sources (glucose and lactate), but also in supplying an energy ‘buffer’ (creatine). These findings lead to the novel insight that the creatine/phosphocreatine shuttle system is based on an intricate relationship between the blood-brain barrier, inner blood-retinal barrier, glia, and neurons (photoreceptor cells) to maintain and ensure energy homeostasis in the brain and retina

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta, M.L., Kalloniatis, M., and Christie, D.L., 2005, Creatine transporter localization in developing and adult retina: importance of creatine to retinal function. Am. J. Physiol. Cell Physiol. 289: C1015–C1023.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, L.S., Verhoeven, N.M., Roos, B., Valongo, C., Cardoso, M.L., Vilarinho, L., Salomons, G.S., and Jakobs, C., 2004, Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol. Genet. Metab. 82: 214–219.

    Article  PubMed  CAS  Google Scholar 

  • Balestrino, M., Rebaudo, R., and Lunardi, G., 1999, Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res. 816: 124–130.

    Article  PubMed  CAS  Google Scholar 

  • Bélanger, M., Asashima, T., Ohtsuki, S., Yamaguchi, H., Ito, S., and Terasaki, T., 2007, Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem. Int. 50: 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, M.C., Tosetti, M., Fornai, F., Alessandri, M.G., Cipriani, P., De Vito, G., and Canapicchi, R., 2000, Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann. Neurol. 47: 511–513.

    Article  PubMed  CAS  Google Scholar 

  • Bizzi, A., Bugiani, M., Salomons, G.S., Hunneman, D.H., Moroni, I., Estienne, M., Danesi, U., Jakobs, C., and Uziel, G., 2002, X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann. Neurol. 52: 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Braissant, O., Henry, H., Loup, M., Eilers, B., and Bachmann, C., 2001, Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study. Brain Res. Mol. Brain Res. 86: 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Braissant, O., Bachmann, C., and Henry, H., 2007, Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell. Biochem. 46: 67–81.

    Article  PubMed  Google Scholar 

  • Brewer, G.J., and Wallimann, T.W., 2000, Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J. Neurochem. 74: 1968–1978.

    Article  PubMed  CAS  Google Scholar 

  • Cecil, K.M., Salomons, G.S., Ball, W.S., Jr., Wong, B., Chuck, G., Verhoeven, N.M., Jakobs, C., and DeGrauw, T.J., 2001, Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann. Neurol. 49: 401–404.

    Article  PubMed  CAS  Google Scholar 

  • Dechent, P., Pouwels, P.J., Wilken, B., Hanefeld, F., and Frahm, J., 1999, Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. 277: R698–R704.

    PubMed  CAS  Google Scholar 

  • deGrauw, T.J., Salomons, G.S., Cecil, K.M., Chuck, G., Newmeyer, A., Schapiro, M.B., and Jakobs, C., 2002, Congenital creatine transporter deficiency. Neuropediatrics 33: 232–238.

    Article  PubMed  CAS  Google Scholar 

  • Dringen, R., Verleysdonk, S., Hamprecht, B., Willker, W., Leibfritz, D., and Brand, A., 1998, Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J. Neurochem. 70: 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Enerson, B.E., and Drewes, L.R., 2003, Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J. Pharm. Sci. 92: 1531–1544.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, D.Z., Leino, R.L., and Drewes, L.R., 1999, Distribution of monocarboxylate transporters MCT1 and MCT2 in rat retina. Neuroscience 92: 367–375.

    Article  PubMed  CAS  Google Scholar 

  • Guimbal, C., and Kilimann, M.W., 1993, A Na+ -dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J. Biol. Chem. 268: 8418–8421.

    PubMed  CAS  Google Scholar 

  • Hall, S.W., and Kühn, H., 1986, Purification and properties of guanylate kinase from bovine retinas and rod outer segments. Eur. J. Biochem. 161: 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Hosoya, K., and Tomi, M., 2005, Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol. Pharm. Bull. 28: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Item, C.B., Stöckler-Ipsiroglu, S., Stromberger, C., Muhl, A., Alessandri, M.G., Bianchi, M.C., Tosetti, M., Fornai, F., and Cioni, G., 2001, Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am. J. Hum. Genet. 69: 1127–1133.

    Article  PubMed  CAS  Google Scholar 

  • Kahler, S.G., and Fahey, M.C., 2003, Metabolic disorders and mental retardation. Am. J. Med. Genet. C Semin. Med. Genet. 117: 31–41.

    Article  PubMed  Google Scholar 

  • Klivenyi, P., Ferrante, R.J., Matthews, R.T., Bogdanov, M.B., Klein, A.M., Andreassen, O.A., Mueller, G., Wermer, M., Kaddurah-Daouk, R., and Beal, M.F., 1999, Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat. Med. 5: 347–350.

    Article  PubMed  CAS  Google Scholar 

  • Lightman, S.L., Palestine, A.G., Rapoport, S.I., and Rechthand, E., 1987, Quantitative assessment of the permeability of the rat blood-retinal barrier to small water-soluble non-electrolytes. J. Physiol. 389: 483–490.

    PubMed  CAS  Google Scholar 

  • Magistretti, P.J., 2006, Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 209: 2304–2311.

    Article  PubMed  CAS  Google Scholar 

  • Marescau, B., De Deyn, P., Wiechert, P., Van Gorp, L., and Lowenthal, A., 1986, Comparative study of guanidino compounds in serum and brain of mouse, rat, rabbit, and man. J. Neurochem. 46: 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Marescau, B., Deshmukh, D.R., Kockx, M., Possemiers, I., Qureshi, I.A., Wiechert, P., and De Deyn, P.P., 1992, Guanidino compounds in serum, urine, liver, kidney, and brain of man and some ureotelic animals. Metabolism 41: 526–532.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R.T., Ferrante, R.J., Klivenyi, P., Yang, L., Klein, A.M., Mueller, G., Kaddurah-Daouk, R., and Beal, M.F., 1999, Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp. Neurol. 157: 142–149.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, R.T., Yang, L., Jenkins, B.G., Ferrante, R.J., Rosen, B.R., Kaddurah-Daouk, R., and Beal, M.F., 1998, Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J. Neurosci. 18: 156–163.

    PubMed  CAS  Google Scholar 

  • Nakashima, T., Tomi, M., Katayama, K., Tachikawa, M., Watanabe, M., Terasaki, T., and Hosoya, K., 2004, Blood-to-retina transport of creatine via creatine transporter (CRT) at the rat inner blood-retinal barrier. J. Neurochem. 89: 1454–1461.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, T., Tomi, M., Tachikawa, M., Watanabe, M., Terasaki, T., and Hosoya, K.I., 2005, Evidence for creatine biosynthesis in Müller glia. Glia 52: 47–52.

    Article  PubMed  Google Scholar 

  • Ohtsuki, S., 2004, New aspects of the blood-brain barrier transporters; its physiological roles in the central nervous system. Biol. Pharm. Bull. 27: 1489–1496.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki, S., Kamiya, N., Hori, S., and Terasaki, T., 2005, Vascular endothelium-selective gene induction by Tie2 promoter/enhancer in the brain and retina of a transgenic rat. Pharm. Res. 22: 852–857.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki, S., Kikkawa, T., Hori, S., and Terasaki, T., 2006, Modulation and compensation of the mRNA expression of energy related transporters in the brain of glucose transporter 1-deficient mice. Biol. Pharm. Bull. 29: 1587–1591.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki, S., Tachikawa, M., Takanaga, H., Shimizu, H., Watanabe, M., Hosoya, K., and Terasaki, T., 2002, The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J. Cereb. Blood Flow Metab. 22: 1327–1335.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W.M., Boado, R.J., and Farrell, C.R., 1990, Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization. J. Biol. Chem. 265: 18035–18040.

    PubMed  CAS  Google Scholar 

  • Persky, A.M., and Brazeau, G.A., 2001, Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol. Rev. 53: 161–176.

    PubMed  CAS  Google Scholar 

  • Poitry-Yamate, C.L., Poitry, S., and Tsacopoulos, M., 1995, Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15: 5179–5191.

    PubMed  CAS  Google Scholar 

  • Poo-Arguelles, P., Arias, A., Vilaseca, M.A., Ribes, A., Artuch, R., Sans-Fito, A., Moreno, A., Jakobs, C., and Salomons, G., 2006, X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism. J. Inherit. Metab. Dis. 29: 220–223.

    Article  PubMed  CAS  Google Scholar 

  • Rauen, T., and Wiessner, M., 2000, Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem. Int. 37: 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Salomons, G.S., van Dooren, S.J., Verhoeven, N.M., Cecil, K.M., Ball, W.S., Degrauw, T.J., and Jakobs, C., 2001, X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am. J. Hum. Genet. 68: 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  • Saltarelli, M.D., Bauman, A.L., Moore, K.R., Bradley, C.C., and Blakely, R.D., 1996, Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev. Neurosci. 18: 524–534.

    PubMed  CAS  Google Scholar 

  • Sather, W.A., and Detwiler, P.B., 1987, Intracellular biochemical manipulation of phototransduction in detached rod outer segments. Proc. Natl. Acad. Sci. USA 84: 9290–9294.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, A., 2003, Creatine deficiency syndromes. Mol. Cell. Biochem. 244: 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Shefner, J.M., Cudkowicz, M.E., Schoenfeld, D., Conrad, T., Taft, J., Chilton, M., Urbinelli, L., Qureshi, M., Zhang, H., Pestronk, A., Caress, J., Donofrio, P., Sorenson, E., Bradley, W., Lomen-Hoerth, C., Pioro, E., Rezania, K., Ross, M., Pascuzzi, R., Heiman-Patterson, T., Tandan, R., Mitsumoto, H., Rothstein, J., Smith-Palmer, T., MacDonald, D., and Burke, D., 2004, A clinical trial of creatine in ALS. Neurology 63: 1656–1661.

    PubMed  CAS  Google Scholar 

  • Sipilä, I., Simell, O., and Arjomaa, P., 1980, Gyrate atrophy of the choroid and retina with hyperornithinemia. Deficient formation of guanidinoacetic acid from arginine. J. Clin. Invest. 66: 684–687.

    PubMed  Google Scholar 

  • Sipilä, I., Valle, D., and Brusilow, S., 1992, Low guanidinoacetic acid and creatine concentrations in gyrate atrophy of choroids and retina (GA). In: Guanidino Compounds in Biology and Medicine (De Deyn, P.P., Marescau, B., Stalon, V., and Qureshi, I., eds.), John Libbey Ltd, London, pp 379–383.

    Google Scholar 

  • Sora, I., Richman, J., Santoro, G., Wei, H., Wang, Y., Vanderah, T., Horvath, R., Nguyen, M., Waite, S., Roeske, W.R., and et al., 1994, The cloning and expression of a human creatine transporter. Biochem. Biophys. Res. Commun. 204: 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Stöckler, S., Hanefeld, F., and Frahm, J., 1996, Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348: 789–790.

    Article  PubMed  Google Scholar 

  • Stöckler, S., Holzbach, U., Hanefeld, F., Marquardt, I., Helms, G., Requart, M., Hanicke, W., and Frahm, J., 1994, Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr. Res. 36: 409–413.

    PubMed  Google Scholar 

  • Stockler, S., Schutz, P.W., and Salomons, G.S., 2007, Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell. Biochem. 46: 149–166.

    PubMed  Google Scholar 

  • Tachikawa, M., Fukaya, M., Terasaki, T., Ohtsuki, S., and Watanabe, M., 2004, Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur. J. Neurosci. 20: 144–160.

    Article  PubMed  Google Scholar 

  • Takata, K., Kasahara, T., Kasahara, M., Ezaki, O., and Hirano, H., 1992, Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Invest. Ophthalmol. Vis. Sci. 33: 377–383.

    PubMed  CAS  Google Scholar 

  • Terasaki, T., and Ohtsuki, S., 2005, Brain-to-blood transporters for endogenous substrates and xenobiotics at the blood-brain barrier: an overview of biology and methodology. NeuroRx 2: 63–72.

    Article  PubMed  Google Scholar 

  • Terasaki, T., Ohtsuki, S., Hori, S., Takanaga, H., Nakashima, E., and Hosoya, K., 2003, New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov. Today 8: 944–954.

    Article  PubMed  CAS  Google Scholar 

  • Vannas-Sulonen, K., Sipila, I., Vannas, A., Simell, O., and Rapola, J., 1985, Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology 92: 1719–1727.

    PubMed  CAS  Google Scholar 

  • Voat, D., and Voat, J.G., 1995, Biochemistry, 2nd edn. John Wiley & Sons, Inc, Toronto, Canada.

    Google Scholar 

  • Wallimann, T., Wegmann, G., Moser, H., Huber, R., and Eppenberger, H.M., 1986, High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Proc. Natl. Acad. Sci. USA 83: 3816–3819.

    Article  PubMed  CAS  Google Scholar 

  • Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H.M., 1992, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ’phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281: 21–40.

    PubMed  CAS  Google Scholar 

  • Wang, Y.E., Esbensen, P., and Bentley, D., 1998, Arginine kinase expression and localization in growth cone migration. J. Neurosci. 18: 987–998.

    PubMed  CAS  Google Scholar 

  • Wyss, M., and Kaddurah-Daouk, R., 2000, Creatine and creatinine metabolism. Physiol. Rev. 80: 1107–1213.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tachikawa, M., Hosoya, KI., Ohtsuki, S., Terasaki, T. (2007). A Novel Relationship Between Creatine Transport at the Blood-Brain and Blood-Retinal Barriers, Creatine Biosynthesis, And its Use for Brain and Retinal Energy Homeostasis. In: Salomons, G.S., Wyss, M. (eds) Creatine and Creatine Kinase in Health and Disease. Subcellular Biochemistry, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6486-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6486-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6485-2

  • Online ISBN: 978-1-4020-6486-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics