Skip to main content

Introduction – Creatine: Cheap Ergogenic Supplement with Great Potential for Health and Disease

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 46))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adcock, K.H., Nedelcu, J., Loenneker, T., Martin, E., Wallimann, T., and Wagner, B.P., 2002, Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev. Neurosci. 24: 382–388.

    Article  PubMed  CAS  Google Scholar 

  • Alfieri, R.R., Bonelli, M.A., Cavazzoni, A., Brigotti, M., Fumarola, C., Sestili, P., Mozzoni, P., De Palma, G., Mutti, A., Carnicelli, D., et al., 2006, Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress. J. Physiol. 576: 391–401.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, L.S., Salomons, G.S., Hogenboom, F., Jakobs, C., and Schoffelmeer, A.N., 2006, Exocytotic release of creatine in rat brain. Synapse 60: 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Berneburg, M., Gremmel, T., Kurten, V., Schroeder, P., Hertel, I., von Mikecz, A., Wild, S., Chen, M., Declercq, L., Matsui, M., et al., 2005, Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J. Invest. Dermatol. 125: 213–220.

    PubMed  CAS  Google Scholar 

  • Bessman, S.P., and Carpenter, C.L., 1985, The creatine-creatine phosphate energy shuttle. Annu. Rev. Biochem. 54: 831–862.

    Article  PubMed  CAS  Google Scholar 

  • Bessman, S.P., and Fonyo, A., 1966, The possible role of the mitochondrial bound creatine kinase in regulation of mitochondrial respiration. Biochem. Biophys. Res. Commun. 22: 597–602.

    Article  PubMed  CAS  Google Scholar 

  • Bessman, S.P., and Geiger, P.J., 1981, Transport of energy in muscle: the phosphorylcreatine shuttle. Science 211: 448–452.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, M.C., Tosetti, M., Battini, R., Leuzzi, V., Alessandri, M.G., Carducci, C., Antonozzi, I., and Cioni, G., 2007, Treatment monitoring of brain creatine deficiency syndromes: a 1H- and 31P-MR spectroscopy study. Am. J. Neuroradiol. 28: 548–554.

    PubMed  CAS  Google Scholar 

  • Bodenmiller, B., Mueller, L.N., Mueller, M., Domon, B., and Aebersold, R., 2007, Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Meth. 4: 231–237.

    Article  CAS  Google Scholar 

  • Bothwell, J.H., Rae, C., Dixon, R.M., Styles, P., and Bhakoo, K.K., 2001, Hypo-osmotic swelling-activated release of organic osmolytes in brain slices: implications for brain oedema in vivo. J. Neurochem. 77: 1632–1640.

    Article  PubMed  CAS  Google Scholar 

  • Braissant, O., Bachmann, C., and Henry, H., 2007, Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell. Biochem. 46: 67–81.

    PubMed  Google Scholar 

  • Brdiczka, D., Beutner, G., Ruck, A., Dolder, M., and Wallimann, T., 1998, The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors 8: 235–242.

    PubMed  CAS  Google Scholar 

  • Brewer, G.J., and Wallimann, T.W., 2000, Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J. Neurochem. 74: 1968–1978.

    Article  PubMed  CAS  Google Scholar 

  • Brosnan, J.T., and Brosnan, M.E., 2007, Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu. Rev. Nutr. 27: 241–261.

    Article  PubMed  CAS  Google Scholar 

  • Brustovetsky, N., Brustovetsky, T., and Dubinsky, J.M., 2001, On the mechanisms of neuroprotection by creatine and phosphocreatine. J. Neurochem. 76: 425–434.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., Im, J., Nioka, S., and Kushmerick, M., 2006, Skeletal muscle energetics with PNMR: personal views and historic perspectives. NMR Biomed. 19: 904–926.

    Article  PubMed  Google Scholar 

  • Chanutin, A., 1926, The fate of creatine when administred to man. J. Biol. Chem. 67: 29–41.

    CAS  Google Scholar 

  • Christie, D.L., 2007, Functional insights into the creatine transporter. Subcell. Biochem. 46: 99–118.

    PubMed  Google Scholar 

  • Conway, M., and Clark, J., 1996, Creatine and Creatine Phosphate: Scientific and Clinical Perspectives. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Couzin, J., 2007, Clinical research: testing a novel strategy against Parkinson’s disease. Science 315: 1778.

    PubMed  CAS  Google Scholar 

  • Crozatier, B., Badoual, T., Boehm, E., Ennezat, P.V., Guenoun, T., Su, J., Veksler, V., Hittinger, L., and Ventura-Clapier, R., 2002, Role of creatine kinase in cardiac excitation-contraction coupling: studies in creatine kinase-deficient mice. FASEB J. 16: 653–660.

    Article  PubMed  CAS  Google Scholar 

  • De Deyn, P.P., and Macdonald, R.L., 1990, Guanidino compounds that are increased in cerebrospinal fluid and brain of uremic patients inhibit GABA and glycine responses on mouse neurons in cell culture. Ann. Neurol. 28: 627–633.

    Article  PubMed  Google Scholar 

  • de Groof, A.J., Fransen, J.A., Errington, R.J., Willems, P.H., Wieringa, B., and Koopman, W.J., 2002, The creatine kinase system is essential for optimal refill of the sarcoplasmic reticulum Ca2+ store in skeletal muscle. J. Biol. Chem. 277: 5275–5284

    Article  PubMed  CAS  Google Scholar 

  • deGrauw, T.J., Cecil, K.M., Byars, A.W., Salomons, G.S., Ball, W.S., and Jakobs, C., 2003, The clinical syndrome of creatine transporter deficiency. Mol. Cell. Biochem. 244: 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Dolder, M., Walzel, B., Speer, O., Schlattner, U., and Wallimann, T., 2003, Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J. Biol. Chem. 278: 17760–17766.

    Article  PubMed  CAS  Google Scholar 

  • Ellington, W.R., and Suzuki, T., 2007, Early evolution of the creatine kinase gene family and the capacity for creatine biosynthesis and membrane transport. Subcell. Biochem. 46: 17–26.

    PubMed  Google Scholar 

  • Eppenberger, H.M., Dawson, D.M., and Kaplan, N.O., 1967, The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. J. Biol. Chem. 242: 204–209.

    PubMed  CAS  Google Scholar 

  • Eppenberger, H.M., Eppenberger, M., Richterich, R., and Aebi, H., 1964, The ontogeny of creatine kinase isozymes. Dev. Biol. 10: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Fritz-Wolf, K., Schnyder, T., Wallimann, T., and Kabsch, W., 1996, Structure of mitochondrial creatine kinase. Nature 381: 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Greenhaff, P.L., Casey, A., Short, A.H., Harris, R., Soderlund, K., and Hultman, E., 1993, Influence of oral creatine supplementation on muscle torque during repeated bouts of maximal voluntary exercise in man. Clin. Sci. (London) 84: 565–571.

    CAS  Google Scholar 

  • Harris, R.C., Soderlund, K., and Hultman, E., 1992, Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. (London) 83: 367–374.

    CAS  Google Scholar 

  • Hatano, E., Tanaka, A., Kanazawa, A., Tsuyuki, S., Tsunekawa, S., Iwata, S., Takahashi, R., Chance, B., and Yamaoka, Y., 2004, Inhibition of tumor necrosis factor-induced apoptosis in transgenic mouse liver expressing creatine kinase. Liver Int. 24: 384–393.

    Article  PubMed  CAS  Google Scholar 

  • Heerschap, A., Kan, H.E., Nabuurs, C.I.H.C., Renema, W.K., Isbrandt, D., and Wieringa, B., 2007, In vivo magnetic resonance spectroscopy of transgenic mice with altered expression of guanidinoacetate methyltransferase and creatine kinase isoenzymes. Subcell. Biochem. 46: 119–148.

    PubMed  Google Scholar 

  • Hemmer, W., Riesinger, I., Wallimann, T., Eppenberger, H.M., and Quest, A.F., 1993, Brain-type creatine kinase in photoreceptor cell outer segments: role of a phosphocreatine circuit in outer segment energy metabolism and phototransduction. J. Cell Sci. 106: 671–683.

    PubMed  CAS  Google Scholar 

  • Hespel, P., Op’t Eijnde, B., and Van Leemputte, M., 2002, Opposite actions of caffeine and creatine on muscle relaxation time in humans. J. Appl. Physiol. 92: 513–518.

    PubMed  CAS  Google Scholar 

  • Hespel, P., and Derave, W., 2007, Ergogenic effects of creatine in sports and rehabilitation. Subcell. Biochem. 46: 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, G.G., and Ellington, W.R., 2005, Over-expression, purification and characterization of the oligomerization dynamics of an invertebrate mitochondrial creatine kinase. Biochim. Biophys. Acta 1751: 184–193.

    PubMed  CAS  Google Scholar 

  • Hoffman, G.G., Sona, S., Bertin, M., and Ellington, W.R., 2006, The role of an absolutely conserved tryptophan residue in octamer formation and stability in mitochondrial creatine kinases. Biochim. Biophys. Acta 1764: 1512–1517.

    PubMed  CAS  Google Scholar 

  • Hornemann, T., Kempa, S., Himmel, M., Hayess, K., Furst, D.O., and Wallimann, T., 2003, Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein. J. Mol. Biol. 332: 877–887.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, H., Heldt, H.W., and Klingenberg, M., 1964, High activity of creatine kinase in mitochondria from muscle and brain and evidence for a separate mitochondrial isoenzyme of creatine kinase. Biochem. Biophys. Res. Commun. 16: 516–521.

    Article  PubMed  CAS  Google Scholar 

  • Jacobus, W.E., and Lehninger, A.L., 1973, Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J. Biol. Chem. 248: 4803–4810.

    PubMed  CAS  Google Scholar 

  • Jost, C.R., Van Der Zee, C.E., In ’t Zandt, H.J., Oerlemans, F., Verheij, M., Streijger, F., Fransen, J., Heerschap, A., Cools, A.R., and Wieringa, B., 2002, Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. Eur. J. Neurosci. 15: 1692–1706.

    Article  PubMed  Google Scholar 

  • Kaldis, P., Kamp, G., Piendl, T., and Wallimann, T., 1997, Functions of creatine kinase isoenzymes in spermatozoa. Adv. Dev. Biochem. 5: 275–312.

    CAS  Google Scholar 

  • Kay, L., Nicolay, K., Wieringa, B., Saks, V., and Wallimann, T., 2000, Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ. J. Biol. Chem. 275: 6937–6944.

    Article  PubMed  CAS  Google Scholar 

  • Kleefstra, T., Rosenberg, E.H., Salomons, G.S., Stroink, H., van Bokhoven, H., Hamel, B.C., and de Vries, B.B., 2005, Progressive intestinal, neurological and psychiatric problems in two adult males with cerebral creatine deficiency caused by an SLC6A8 mutation. Clin. Genet. 68: 379–381.

    Article  PubMed  CAS  Google Scholar 

  • Klein, A.M., and Ferrante, R.J., 2007, The neuroprotective role of creatine. Subcell. Biochem. 46: 205–243.

    PubMed  Google Scholar 

  • Kroemer, G., Galluzzi, L., and Brenner, C., 2007, Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87: 99–163.

    Article  PubMed  CAS  Google Scholar 

  • Lenz, H., Schmidt, M., Welge, V., Schlattner, U., Wallimann, T., Elsasser, H.P., Wittern, K.P., Wenck, H., Stab, F., and Blatt, T., 2005, The creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo. J. Invest. Dermatol. 124: 443–452.

    Article  PubMed  CAS  Google Scholar 

  • Lipmann, F., 1977, Discovery of creatine phosphate in muscle. Trends Biochem. Sci. 2: 21–22.

    Article  Google Scholar 

  • Lipmann, F., 1979, Discovery of the adenylic acid system in animal tissues. Trends Biochem. Sci. 4: 22–24.

    Article  CAS  Google Scholar 

  • McCall, W., and Persky, A.M., 2007, Pharmacokinetics of creatine. Subcell. Biochem. 46: 261–273.

    PubMed  Google Scholar 

  • Meyer, L.E., Machado, L.B., Santiago, A.P., da-Silva, W.S., De Felice, F.G., Holub, O., Oliveira, M.F., and Galina, A., 2006, Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J. Biol. Chem. 281: 37361–37371.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R.A., Sweeney, H.L., and Kushmerick, M.J., 1984, A simple analysis of the ‘‘phosphocreatine shuttle’’. Am. J. Physiol. 246: C365–C377.

    PubMed  CAS  Google Scholar 

  • Minajeva, A., Ventura-Clapier, R., and Veksler, V., 1996, Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pflugers Arch. 432: 904–912.

    Article  PubMed  CAS  Google Scholar 

  • Momken, I., Lechene, P., Koulmann, N., Fortin, D., Mateo, P., Doan, B.T., Hoerter, J., Bigard, X., Veksler, V., and Ventura-Clapier, R., 2005, Impaired voluntary running capacity of creatine kinase-deficient mice. J. Physiol. 565: 951–964.

    Article  PubMed  CAS  Google Scholar 

  • Mommaerts, W.F., 1969, Energetics of muscular contraction. Physiol. Rev. 49: 427–508.

    PubMed  CAS  Google Scholar 

  • Naegle, S., Hockerts, T., and Boegelmann, G., 1964, The modification of the creatine phosphokinase equilibrium by myocardial pH decline under ischemic conditions. Klin. Wochenschr. 42: 780–784.

    Article  PubMed  CAS  Google Scholar 

  • Neubauer, S., 2007, The failing heart - an engine out of fuel. N. Engl. J. Med. 356: 1140–1151.

    Article  PubMed  Google Scholar 

  • Novotova, M., Pavlovicova, M., Veksler, V.I., Ventura-Clapier, R., and Zahradnik, I., 2006, Ultrastructural remodeling of fast skeletal muscle fibers induced by invalidation of creatine kinase. Am. J. Physiol. Cell Physiol. 291: C1279–C1285.

    Article  PubMed  CAS  Google Scholar 

  • O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A.P., Brdiczka, D., and Wallimann, T., 1997, The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett. 414: 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Passaquin, A.C., Renard, M., Kay, L., Challet, C., Mokhtarian, A., Wallimann, T., and Ruegg, U.T., 2002, Creatine supplementation reduces skeletal muscle degeneration and enhances mitochondrial function in mdx mice. Neuromusc. Disord. 12: 174–182.

    Article  PubMed  Google Scholar 

  • Persky, A.M., and Rawson, E.S., 2007, Safety of creatine supplementation. Subcell. Biochem. 46: 275–289.

    PubMed  Google Scholar 

  • Pischel, I., and Gastner, T., 2007, Creatine – its chemical synthesis, chemistry, and legal status. Subcell. Biochem. 46: 291–307.

    PubMed  Google Scholar 

  • Prass, K., Royl, G., Lindauer, U., Freyer, D., Megow, D., Dirnagl, U., Stockler-Ipsiroglu, G., Wallimann, T., and Priller, J., 2007, Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. J. Cerebr. Blood Flow Metab. 27: 452–459.

    Article  CAS  Google Scholar 

  • Pulido, S.M., Passaquin, A.C., Leijendekker, W.J., Challet, C., Wallimann, T., and Ruegg, U.T., 1998, Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett. 439: 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Rapoport, S., 1977, Lohmann and ATP. Trends Biochem. Sci. 2: 163–164.

    Article  Google Scholar 

  • Renema, W.K., Schmidt, A., van Asten, J.J., Oerlemans, F., Ullrich, K., Wieringa, B., Isbrandt, D., and Heerschap, A., 2003, MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: validation of an animal model to study creatine deficiency. Magn. Reson. Med. 50: 936–943.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M.C., MacDonald, J.R., Mahoney, D.J., Parise, G., Beal, M.F., and Tarnopolsky, M.A., 2007, Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve 35: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, E.H., Almeida, L.S., Kleefstra, T., deGrauw, R.S., Yntema, H.G., Bahi, N., Moraine, C., Ropers, H.H., Fryns, J.P., deGrauw, T.J., et al., 2004, High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am. J. Hum. Genet. 75: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, A.M., Eppenberger, H.M., Volpe, P., Cotrufo, R., and Wallimann, T., 1990, Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J. Biol. Chem. 265: 5258–5266.

    PubMed  CAS  Google Scholar 

  • Saks, V.A., and Kupriyanov, V.V., 1982, Intracellular energy transport and control of cardiac contraction. Adv. Myocardiol. 3: 475–497.

    PubMed  CAS  Google Scholar 

  • Saks, V.A., Rosenshtraukh, L.V., Smirnov, V.N., and Chazov, E.I., 1978, Role of creatine phosphokinase in cellular function and metabolism. Can. J. Physiol. Pharmacol. 56: 691–706.

    PubMed  CAS  Google Scholar 

  • Saks, V.A., ed., 2007, Molecular System Bioenergetics – Energy for Life. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  • Saks, V., Kaambre, T., Guzun, R., Anmann, T., Sikk, P., Schlattner, U., Wallimann, T., Aliev, M., and Vendelin, M., 2007, The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell. Biochem. 46: 27–65.

    PubMed  Google Scholar 

  • Schlattner, U., Forstner, M., Eder, M., Stachowiak, O., Fritz-Wolf, K., and Wallimann, T., 1998, Functional aspects of the X-ray structure of mitochondrial creatine kinase: a molecular physiology approach. Mol. Cell. Biochem. 184: 125–140.

    Article  PubMed  CAS  Google Scholar 

  • Schlattner, U., Tokarska-Schlattner, M., and Wallimann, T., 2006, Mitochondrial creatine kinase in human health and disease. Biochim. Biophys. Acta 1762: 164–180.

    PubMed  CAS  Google Scholar 

  • Schmidt, A., Marescau, B., Boehm, E.A., Renema, W.K., Peco, R., Das, A., Steinfeld, R., Chan, S., Wallis, J., Davidoff, M., et al., 2004, Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Hum. Mol. Genet. 13: 905–921.

    Article  PubMed  CAS  Google Scholar 

  • Scholte, H.R., 1973, On the triple localization of creatine kinase in heart and skeletal muscle cells of the rat: evidence for the existence of myofibrillar and mitochondrial isoenzymes. Biochim. Biophys. Acta 305: 413–427.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, A., 2003, Creatine deficiency syndromes. Mol. Cell. Biochem. 244: 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, A., and Battini, R., 2007, Pre-symptomatic treatment of creatine biosynthesis defects. Subcell. Biochem. 46: 167–181.

    PubMed  Google Scholar 

  • Sestili, P., Martinelli, C., Bravi, G., Piccoli, G., Curci, R., Battistelli, M., Falcieri, E., Agostini, D., Gioacchini, A.M., and Stocchi, V., 2006, Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic. Biol. Med. 40: 837–849.

    Article  PubMed  CAS  Google Scholar 

  • Shin, J.B., Streijger, F., Beynon, A., Peters, T., Gadzala, L., McMillen, D., Bystrom, C., Van der Zee, C.E., Wallimann, T., and Gillespie, P.G., 2007, Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 53: 371–386.

    Article  PubMed  CAS  Google Scholar 

  • Steeghs, K., Benders, A., Oerlemans, F., de Haan, A., Heerschap, A., Ruitenbeek, W., Jost, C., van Deursen, J., Perryman, B., Pette, D., et al., 1997, Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89: 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Steeghs, K., Oerlemans, F., and Wieringa, B., 1995, Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochim. Biophys. Acta 1230: 130–138.

    Article  PubMed  Google Scholar 

  • Stöckler-Ipsiroglu, S., 1997, Creatine deficiency syndromes: a new perspective on metabolic disorders and a diagnostic challenge. J. Pediatr. 131: 510–511.

    PubMed  Google Scholar 

  • Stockler, S., Schutz, P.W., and Salomons, G.S., 2007, Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell. Biochem. 46: 149–166.

    Article  PubMed  Google Scholar 

  • Streijger, F., Jost, C.R., Oerlemans, F., Ellenbroek, B.A., Cools, A.R., Wieringa, B., and Van der Zee, C.E., 2004, Mice lacking the UbCKmit isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic startle reflex responses. Mol. Cell. Biochem. 256–257: 305–318.

    Article  PubMed  Google Scholar 

  • Streijger, F., Oerlemans, F., Ellenbroek, B.A., Jost, C.R., Wieringa, B., and Van der Zee, C.E., 2005, Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav. Brain Res. 157: 219–234.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, P.G., Geiger, J.D., Mattson, M.P., and Scheff, S.W., 2000, Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 48: 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Sulser, H., 1968, Die Extraktstoffe des Fleisches. Wissenschafts-Verlag Stuttgart. Handbuch II/2: 1267–1304.

    Google Scholar 

  • Tachikawa, M., Hosoya, K.-i., Ohtsuki, S., and Terasaki, T., 2007, A novel relationship between creatine transport at the blood-brain and blood-retinal barriers, creatine biosynthesis, and its use for brain and retinal energy homeostasis. Subcell. Biochem. 46: 83–98.

    PubMed  Google Scholar 

  • Tarnopolsky, M.A., and Beal, M.F., 2001, Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann. Neurol. 49: 561–574.

    Article  PubMed  CAS  Google Scholar 

  • Tarnopolsky, M.A., 2007, Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell. Biochem. 46: 183–204.

    PubMed  Google Scholar 

  • Tombes, R.M., and Shapiro, B.M., 1985, Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell 41: 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Turner, D.C., Wallimann, T., and Eppenberger, H.M., 1973, A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc. Natl. Acad. Sci. USA 70: 702–705.

    Article  PubMed  CAS  Google Scholar 

  • van Deursen, J., Heerschap, A., Oerlemans, F., Ruitenbeek, W., Jap, P., ter Laak, H., and Wieringa, B., 1993, Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74: 621–631.

    Article  PubMed  Google Scholar 

  • Vandenberghe, K., Goris, M., Van Hecke, P., Van Leemputte, M., Vangerven, L., and Hespel, P., 1997, Long-term creatine intake is beneficial to muscle performance during resistance training. J. Appl. Physiol. 83: 2055–2063.

    PubMed  CAS  Google Scholar 

  • Ventura-Clapier, R., Kaasik, A., and Veksler, V., 2004, Structural and functional adaptations of striated muscles to CK deficiency. Mol. Cell. Biochem. 256–257: 29–41.

    Article  PubMed  Google Scholar 

  • Verbruggen, K.T., Sijens, P.E., Schulze, A., Lunsing, R.J., Jakobs, C., Salomons, G.S., and van Spronsen, F.J., 2007, Successful treatment of a guanidinoacetate methyltransferase deficient patient: Findings with relevance to treatment strategy and pathophysiology. Mol. Genet. Metab. 91: 294–296.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven, N.M., Salomons, G.S., and Jakobs, C., 2005, Laboratory diagnosis of defects of creatine biosynthesis and transport. Clin. Chim. Acta 361: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Wallimann, T., 1975, Creatine Kinase Isoenzymes and Myofibrillar Structure. PhD Thesis No. 5437, ETH Zurich, Switzerland.

    Google Scholar 

  • Wallimann, T., 1983, Localization and Function of M-line-bound Creatine Kinase: Structural M-band Model and Creatine-Phosphate Shuttle. Habilitation, ETH Zurich, Switzerland.

    Google Scholar 

  • Wallimann, T., 1996, 31P-NMR-measured creatine kinase reaction flux in muscle: a caveat! J. Muscle Res. Cell Motil. 17: 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Wallimann, T., Dolder, M., Schlattner, U., Eder, M., Hornemann, T., O’Gorman, E., Ruck, A., and Brdiczka, D., 1998, Some new aspects of creatine kinase (CK): compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 8: 229–234.

    PubMed  CAS  Google Scholar 

  • Wallimann, T., and Hemmer, W., 1994, Creatine kinase in non-muscle tissues and cells. Mol. Cell. Biochem. 133–134: 193–220.

    Article  PubMed  Google Scholar 

  • Wallimann, T., Tokarska-Schlattner, M., Neumann, D., Epand, R.M., Epand, R.F., Andres, R.H., Widmer, H.R., Hornemann, T., Saks, V.A., Agarkova, I., and Schlattner, U., 2007, The phospho-creatine circuit: molecular and cellular physiology of creatine kinases, sensitivity to free radicals and enhancement by creatine supplementation. In: Molecular Systems Bioenergetics: Energy for Life, Basic Principles, Organization and Dynamics of Cellular Energetics, Saks, V.A., ed., Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  • Wallimann, T., Turner, D.C., and Eppenberger, H.M., 1977, Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. J. Cell Biol. 75: 297–317.

    Article  PubMed  CAS  Google Scholar 

  • Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H.M., 1992, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281: 21–40.

    PubMed  CAS  Google Scholar 

  • Wegmann, G., Zanolla, E., Eppenberger, H.M., and Wallimann, T., 1992, In situ compartmentation of creatine kinase in intact sarcomeric muscle: the acto-myosin overlap zone as a molecular sieve. J. Muscle Res. Cell Motil. 13: 420–435.

    Article  PubMed  CAS  Google Scholar 

  • Wiseman, R.W., and Kushmerick, M.J., 1995, Creatine kinase equilibration follows solution thermodynamics in skeletal muscle. 31P NMR studies using creatine analogs. J. Biol. Chem. 270: 12428–12438.

    Article  PubMed  CAS  Google Scholar 

  • Wyss, M., and Kaddurah-Daouk, R., 2000, Creatine and creatinine metabolism. Physiol. Rev. 80: 1107–1213.

    PubMed  CAS  Google Scholar 

  • Wyss, M., Smeitink, J., Wevers, R.A., and Wallimann, T., 1992, Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim. Biophys. Acta 1102: 119–166.

    Article  PubMed  CAS  Google Scholar 

  • Wyss, M., Braissant, O., Pischel, I., Salomons, G.S., Schulze, A., Stockler, S., and Wallimann, T., 2007, Creatine and creatine kinase in health and disease – a bright future ahead? Subcell. Biochem. 46: 309–334.

    PubMed  Google Scholar 

  • Zhu, S., Li, M., Figueroa, B.E., Liu, A., Stavrovskaya, I.G., Pasinelli, P., Beal, M.F.,Brown, R.H.,Jr., Kristal, B.S., Ferrante, R.J., and Friedlander, R.M., 2004, Prophylactic creatine administrationmediates neuroprotection in cerebral ischemia in mice. J. Neurosci. 24: 5909–5912.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wallimann, T. (2007). Introduction – Creatine: Cheap Ergogenic Supplement with Great Potential for Health and Disease. In: Salomons, G.S., Wyss, M. (eds) Creatine and Creatine Kinase in Health and Disease. Subcellular Biochemistry, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6486-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6486-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6485-2

  • Online ISBN: 978-1-4020-6486-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics