Skip to main content

Drugging the Hsp90 molecular chaperone machine for cancer treatment

  • Chapter
Heat Shock Proteins in Cancer

Part of the book series: Heat Shock Proteins ((HESP,volume 2))

Abstract

The ATP-dependent molecular chaperone heat shock protein 90 (HSP90) is required for the function and stability of an increasing number of oncogenic proteins. HSP90 chaperones these proteins by forming a series of multimeric complexes to facilitate client protein loading, activation and release, a process which is driven by ATP hydrolysis. Many HSP90 client proteins have been implicated in the development and progression of cancer. As a result of this, HSP90 has emerged as an exciting drug target in oncology. Of particular benefit, HSP90 inhibitors have the potential to simultaneously deplete multiple proteins involved in all the six hallmark traits of cancer. The initial approach taken to modulate HSP90 was to focus on inhibiting the ATPase activity, resulting in degradation of client proteins via the ubiquitin proteasome pathway. Several chemical classes of compounds which target the ATP binding pocket of HSP90 have shown anti-cancer activity in preclinical models. The geldanamycin derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) is now undergoing phase II studies. The results from phase I trials have shown clear evidence of target modulation and an indication of clinical activity in melanoma, prostate, renal, multiple myeloma and trastuzumab-refractory breast cancers. These data have provided proof-of-principle that HSP90 is a promising drug target in cancer. A number of new synthetic small molecule inhibitors are currently undergoing development. This review will focus on the current status of the ATP-competitive HSP90 inhibitors as well as novel approaches to inhibit the HSP90 chaperone machine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agatsuma, T., H. Ogawa, K. Akasaka, A. Asai, Y. Yamashita, T. Mizukami, S. Akinaga, and Y. Saitoh. 2002. “Halohydrin and oxime derivatives of radicicol: synthesis and antitumor activities.” Bioorg.Med.Chem. 10:3445–3454.

    PubMed  CAS  Google Scholar 

  • Ali, M.M., S.M. Roe, C.K. Vaughan, P. Meyer, B. Panaretou, P.W. Piper, C. Prodromou, and L.H. Pearl. 2006. “Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex.” Nature. 440:1013–1017.

    PubMed  CAS  Google Scholar 

  • Allan, R.K., D. Mok, B.K. Ward, and T. Ratajczak. 2006. “Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.” J Biol.Chem. 281:7161–7171.

    PubMed  CAS  Google Scholar 

  • Aoyagi, S. and T.K. Archer. 2005. “Modulating molecular chaperone Hsp90 functions through reversible acetylation.” Trends Cell Biol. 15:565–567.

    PubMed  CAS  Google Scholar 

  • Atrash, B., Cooper T.S., Sheldrake P., Workman P., and MacDonald E. 2006. Development of synthetic routes to macrocyclic compounds based on the HSP90 inhibitor radicicol. Tetrahedron Letters 47[13], 2237–2240.

    Google Scholar 

  • Bali, P., M. Pranpat, J. Bradner, M. Balasis, W. Fiskus, F. Guo, K. Rocha, S. Kumaraswamy, S. Boyapalle, P. Atadja, E. Seto, and K. Bhalla. 2005. “Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors.” J Biol.Chem. 280:26729–26734.

    PubMed  CAS  Google Scholar 

  • Banerji, U., A. O’Donnell, M. Scurr, S. Pacey, S. Stapleton, Y. Asad, L. Simmons, A. Maloney, F. Raynaud, M. Campbell, M. Walton, S. Lakhani, S. Kaye, P. Workman, and I. Judson. 2005a. “Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies.” J.Clin.Oncol. 23:4152–4161.

    CAS  Google Scholar 

  • Banerji, U., M. Walton, F. Raynaud, R. Grimshaw, L. Kelland, M. Valenti, I. Judson, and P. Workman. 2005b. “Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models.” Clin.Cancer Res. 11:7023–7032.

    CAS  Google Scholar 

  • Barker, C.R., J. Hamlett, S.R. Pennington, F. Burrows, K. Lundgren, R. Lough, A.J. Watson, and J.R. Jenkins. 2006a. “The topoisomerase II-Hsp90 complex: a new chemotherapeutic target?” Int.J Cancer. 118:2685–2693.

    CAS  Google Scholar 

  • Barker, C.R., A.V. McNamara, S.A. Rackstraw, D.E. Nelson, M.R. White, A.J. Watson, and J.R. Jenkins. 2006b. “Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage.” Nucleic Acids Res. 34:1148–1157.

    CAS  Google Scholar 

  • Basso, A.D., D.B. Solit, G. Chiosis, B. Giri, P. Tsichlis, and N. Rosen. 2002. “Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function.” J Biol.Chem. 277:39858–39866.

    PubMed  CAS  Google Scholar 

  • Bauer, S., L. Yu, M. Read, E. Norman, G. Demetri, and J. Fletcher. 2005. “IPI504, a novel HSP90 inhibitor, causes inhibition and degradation of KIT in imatinib-resistant GIST: Rationale for therapeutic targeting in GIST.” Clinical Cancer Research. 11(24 Suppl):9111s.

    Google Scholar 

  • Bhattacharya, B., B. Krishnan, S. Kaye, M.G. Ormerod, P. Workman, and A.L. Jackman. 2006. The phosphatidylinositide 3-kinase (PI3-Kinase) inhibitor PI103 sensitises some ovarian carcinoma (OC) cell lines to pacilitaxel or carboplatin. Eur J Cancer 4(12) suppl, 81

    Google Scholar 

  • Biamonte, M.A., J. Shi, K. Hong, D.C. Hurst, L. Zhang, J. Fan, D.J. Busch, P.L. Karjian, A.A. Maldonado, J.L. Sensintaffar, Y.C. Yang, A. Kamal, R.E. Lough, K. Lundgren, F.J. Burrows, G.A. Timony, M.F. Boehm, and S.R. Kasibhatla. 2006. “Orally active purine-based inhibitors of the heat shock protein 90.” J.Med.Chem. 49:817–828.

    PubMed  CAS  Google Scholar 

  • Bracher, A. and F.U. Hartl. 2006. “Hsp90 structure: when two ends meet.” Nat Struct Mol Biol. 13:478–480.

    Google Scholar 

  • Burger, A.M., H.H. Fiebig, S.F. Stinson, and E.A. Sausville. 2004. “17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models.” Anticancer Drugs. 15:377–87.

    PubMed  CAS  Google Scholar 

  • Calderwood, S.K., M.A. Khaleque, D.B. Sawyer, and D.R. Ciocca. 2006. “Heat shock proteins in cancer: chaperones of tumorigenesis.” Trends Biochem.Sci. 31:164–172.

    PubMed  CAS  Google Scholar 

  • Carrigan, P.E., L.A. Sikkink, D.F. Smith, and M. Ramirez-Alvarado. 2006. “Domain:domain interactions within Hop, the Hsp70/Hsp90 organizing protein, are required for protein stability and structure.” Protein Science. 15:522–532.

    PubMed  CAS  Google Scholar 

  • Chanan-Khan, A., P. Richardson, M. Alsina, S. Lonial, A. Krishnan, M. Carroll, M. Albitar, A.L. Hannah, R.G. Johnson, and K. Anderson. 2006. “Phase 1 clinical trial of KOS-953 + bortezomib (BZ) in relapsed refractory multiple myeloma (MM).” ASCO Meeting Abstracts. 24:3066.

    Google Scholar 

  • Chandarlapaty, S., Q. Ye, H. Huang, P. Fadden, N. Rosen, and D. Solit. 2006. SNX5542, an oral inhibitor, causes Her2 degradation and inhibition of tumour growth in models of Her2 amplified breast cancer. Eur J Cancer 4 (12) suppl, 165.

    Google Scholar 

  • Chant, I.D., P.E. Rose, and A.G. Morris. 1995. “Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry.” Br.J Haematol. 90:163–168.

    PubMed  CAS  Google Scholar 

  • Cheung, K.M., T.P. Matthews, K. James, M.G. Rowlands, K.J. Boxall, S.Y. Sharp, A. Maloney, S.M. Roe, C. Prodromou, L.H. Pearl, G.W. Aherne, E. McDonald, and P. Workman. 2005. “The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors.” Bioorg.Med.Chem.Lett. 15:3338–3343.

    PubMed  CAS  Google Scholar 

  • Chiosis,G. 2006. “Targeting chaperones in transformed systems–a focus on Hsp90 and cancer.” Expert.Opin.Ther.Targets. 10:37–50.

    PubMed  CAS  Google Scholar 

  • Chiosis, G., L.E. Caldas, and D. Solit. 2006. “Heat shock protein-90 inhibitors: a chronicle from geldanamycin to today’s agents.” Curr.Opin.Investig.Drugs. 7:534–541.

    PubMed  CAS  Google Scholar 

  • Chiosis, G., H. Huezo, N. Rosen, E. Mimnaugh, L. Whitesell, and L. Neckers. 2003a. “17AAG: low target binding affinity and potent cell activity–finding an explanation.” Mol.Cancer Ther. 2:123–129.

    CAS  Google Scholar 

  • Chiosis, G., B. Lucas, H. Huezo, D. Solit, A. Basso, and N. Rosen. 2003b. “Development of purine-scaffold small molecule inhibitors of Hsp90.” Curr Cancer Drug Targets. 3:371–6.

    CAS  Google Scholar 

  • Chung, Y.L., H. Troy, U. Banerji, LE. Jackson, M. Walton, M. Stubbs, J.R. Griffiths, I. Judson, M.O. Leach, P. Workman, and S.M. Ronen. 2003. “Magnetic Resonence Spectroscopic Pharmacodynamic Markers of the Heat Shock Protien Inhibitor 17-Allyamino, 17-Demethoxygeldanamycin (17-AAG) in Human Colon Cancer Models.” J Natl Cancer Inst. 95:1624–1633.

    PubMed  CAS  Google Scholar 

  • Ciocca, D.R., G.M. Clark, A.K. Tandon, S.A. Fuqua, W.J. Welch, and W.L. McGuire. 1993. “Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications.” J Natl.Cancer Inst. 85:570–574.

    PubMed  CAS  Google Scholar 

  • Connell, P., C.A. Ballinger, J. Jiang, Y. Wu, L.J. Thompson, J. Hohfeld, and C. Patterson. 2001. “The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins.” Nat.Cell Biol. 3:93–96.

    PubMed  CAS  Google Scholar 

  • Conroy, S.E., P.D. Sasieni, I. Fentiman, and D.S. Latchman. 1998. “Autoantibodies to the 90kDa heat shock protein and poor survival in breast cancer patients.” Eur.J Cancer. 34:942–943.

    PubMed  CAS  Google Scholar 

  • Cooper, T.S., B. Atrash, P. Sheldrake, P. Workman, and E. McDonald. 2006. Synthesis of resorcinylic macrocycles related to radicicol via ring-closing metathesis. Tetrahedron Letters 47[13], 2241–2243.

    Google Scholar 

  • Cowen, L.E. and S. Lindquist. 2005. “Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi.” Science. 309:2185–2189.

    PubMed  CAS  Google Scholar 

  • da Rocha, D.S., F. Friedlos, Y. Light, C. Springer, P. Workman, and R. Marais. 2005. “Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin.” Cancer Res. 65:10686–10691.

    Google Scholar 

  • Delmotte, P. and J. Delmotteplaquee. 1953. “A new antifungal substance of fungal origin.” Nature. 171:344.

    Google Scholar 

  • Dittmar, K.D. and W.B. Pratt. 1997. “Folding of the glucocorticoid receptor by the reconstituted Hsp90-based chaperone machinery. The initial hsp90.p60.hsp70-dependent step is sufficient for creating the steroid binding conformation.” J.Biol.Chem. 272:13047–13054.

    PubMed  CAS  Google Scholar 

  • Duina, A.A., H.C. Chang, J.A. Marsh, S. Lindquist, and R.F. Gaber. 1996. “A cyclophilin function in Hsp90-dependent signal transduction.” Science. 274:1713–1715.

    PubMed  CAS  Google Scholar 

  • Dymock, B.W., X. Barril, P.A. Brough, J.E. Cansfield, A. Massey, E. McDonald, R.E. Hubbard, A. Surgenor, S.D. Roughley, P. Webb, P. Workman, L. Wright, and M.J. Drysdale. 2005. “Novel, potent small-molecule inhibitors of the molecular chaperone Hsp90 discovered through structure-based design.” J.Med.Chem. 48:4212–4215.

    PubMed  CAS  Google Scholar 

  • Egorin, M.J., T.F. Lagattuta, D.R. Hamburger, J.M. Covey, K.D. White, S.M. Musser, and J.L. Eiseman. 2002. “Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats.” Cancer Chemother Pharmacol. 49:7–19.

    PubMed  CAS  Google Scholar 

  • Egorin, M.J., E.G. Zuhowski, D.M. Rosen, D.L. Sentz, J.M. Covey, and J.L. Eiseman. 2001. “Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1.” Cancer Chemother Pharmacol. 47:291–302.

    PubMed  CAS  Google Scholar 

  • Eiseman, J.L., J. Lan, T.F. Lagattuta, D.R. Hamburger, E. Joseph, J.M. Covey, and M.J. Egorin. 2005. “Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts.” Cancer Chemother Pharmacol. 55:21–32.

    PubMed  CAS  Google Scholar 

  • Erlichman, C., D. Toft, J. Reid, M. Goetz, M. Ames, A. Mandrekar, A. Ajei, A. McCollum, and P. Ivy. 2004. “A Phase I tiral of 17-allylamino-geldanamycin )17AAG) in patients with advanced cancer.” Proc American Assoc Clin Onc. 23:Abstract 3030.

    Google Scholar 

  • Fang, Y., A.E. Fliss, J. Rao, and A.J. Caplan. 1998. “SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins.” Mol.Cell Biol. 18:3727–3734.

    PubMed  CAS  Google Scholar 

  • Fewell, S.W., B.W. Day, and J.L. Brodsky. 2001. “Identification of an inhibitor of hsc70-mediated protein translocation and ATP hydrolysis.” J Biol.Chem. 276:910–914.

    PubMed  CAS  Google Scholar 

  • Fewell, S.W., C.M. Smith, M.A. Lyon, T.P. Dumitrescu, P. Wipf, B.W. Day, and J.L. Brodsky. 2004. “Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity.” J Biol.Chem. 279:51131–51140.

    PubMed  CAS  Google Scholar 

  • Fujiwara, H., T. Yamakuni, M. Ueno, M. Ishizuka, T. Shinkawa, T. Isobe, and Y. Ohizumi. 2004. “IC101 induces apoptosis by Akt dephosphorylation via an inhibition of heat shock protein 90-ATP binding activity accompanied by preventing the interaction with Akt in L1210 cells.” J Pharmacol.Exp.Ther. 310:1288–1295.

    PubMed  CAS  Google Scholar 

  • Furumai, R., A. Matsuyama, N. Kobashi, K.H. Lee, M. Nishiyama, H. Nakajima, A. Tanaka, Y. Komatsu, N. Nishino, M. Yoshida, and S. Horinouchi. 2002. “FK228 (Depsipeptide) as a Natural Prodrug That Inhibits Class I Histone Deacetylases.” Cancer Research. 62:4916–4921.

    PubMed  CAS  Google Scholar 

  • Ge, J., E. Normant, J.R. Porter, J.A. Ali, M.S. Dembski, Y. Gao, A.T. Georges, L. Grenier, R.H. Pak, J. Patterson, J.R. Sydor, T.T. Tibbitts, J.K. Tong, J. Adams, and V.J. Palombella. 2006. “Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90.” J.Med.Chem. 49:4606–4615.

    PubMed  CAS  Google Scholar 

  • George, P., P. Bali, S. Annavarapu, A. Scuto, W. Fiskus, F. Guo, C. Sigua, G. Sondarva, L. Moscinski, P. Atadja, and K. Bhalla. 2005. “Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3.” Blood. 105:1768–1776.

    PubMed  CAS  Google Scholar 

  • Grbovic, O.M., A.D. Basso, A. Sawai, Q. Ye, P. Friedlander, D. Solit, and N. Rosen. 2006. “V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors.” Proc.Natl.Acad.Sci.U.S.A. 103:57–62.

    PubMed  CAS  Google Scholar 

  • Grem, J.L., G. Morrison, X.D. Guo, E. Agnew, C.H. Takimoto, R. Thomas, E. Szabo, L. Grochow, F. Grollman, J.M. Hamilton, L. Neckers, and R.H. Wilson. 2005. “Phase I and pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with solid tumors.” J Clin Oncol. 23:1885–1893.

    PubMed  CAS  Google Scholar 

  • Guo, F., K. Rocha, P. Bali, M. Pranpat, W. Fiskus, S. Boyapalle, S. Kumaraswamy, M. Balasis, B. Greedy, E.S. Armitage, N. Lawrence, and K. Bhalla. 2005a. “Abrogation of Heat Shock Protein 70 Induction as a Strategy to Increase Antileukemia Activity of Heat Shock Protein 90 Inhibitor 17-Allylamino-Demethoxy Geldanamycin.” Cancer Research. 65:10536–10544.

    CAS  Google Scholar 

  • Guo, W., P. Reigan, D. Siegel, J. Zirrolli, D. Gustafson, and D. Ross. 2005b. “Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition.” Cancer Res. 65:10006–10015.

    CAS  Google Scholar 

  • Gyurkocza, B., J. Plescia, C.M. Raskett, D.S. Garlick, P.A. Lowry, B.Z. Carter, M. Andreeff, M. Meli, G. Colombo, and D.C. Altieri. 2006. “Antileukemic activity of shepherdin and molecular diversity of hsp90 inhibitors.” J Natl.Cancer Inst. 98:1068–1077.

    PubMed  CAS  Google Scholar 

  • Hahn, J.S., Z. Hu, D.J. Thiele, and V.R. Iyer. 2004. “Genome-wide analysis of the biology of stress responses through heat shock transcription factor.” Mol.Cell Biol. 24:5249–5256.

    PubMed  CAS  Google Scholar 

  • Haluska, P., D. Toft, S.M. Steinmetz, A. Furth, A. Mandrekar, B.A. Stensgard, A. McCollum, L. Hanson, A. Adjei, and C. Erlichman. 2004. “A phase I trial of gemcitabine (Gem), 17-allylaminogeldanamcyin (17-AAG) and cisplatin (CDDP) in solid tumor patients.” Proc American Assoc Clin Onc. 23:Abstract 3058.

    Google Scholar 

  • Hamamoto, R., Y. Furukawa, M. Morita, Y. Iimura, F.P. Silva, M. Li, R. Yagyu, and Y. Nakamura. 2004. “SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells.” Nat.Cell Biol. 6:731–740.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. and R.A. Weinberg. 2000. “The hallmarks of cancer.” Cell. 100:57–70.

    PubMed  CAS  Google Scholar 

  • Harst, A., H. Lin, and W.M. Obermann. 2005. “Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation.” Biochem.J. 387:789–796.

    PubMed  CAS  Google Scholar 

  • Hernandez, M.P., W.P. Sullivan, and D.O. Toft. 2002. “The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex.” J.Biol.Chem. 277:38294–38304.

    PubMed  CAS  Google Scholar 

  • Hieronymus, H., J. Lamb, K.N. Ross, X.P. Peng, C. Clement, A. Rodina, M. Nieto, J. Du, K. Stegmaier, S.M. Raj, K.N. Maloney, J. Clardy, W.C. Hahn, G. Chiosis, and T.R. Golub. 2006. “Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators.” Cancer Cell. 10:321–330.

    PubMed  CAS  Google Scholar 

  • Holmes, J., S. Sharp, and P. Workman. 2006. “605 POSTER Modulation of the HSP90 co-chaperone AHA1 affects client protein activity and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG).” European Journal of Cancer Supplements. 4:183.

    Google Scholar 

  • Hong, R.L., W.H. Spohn, and M.C. Hung. 1999. “Curcumin inhibits tyrosine kinase activity of p185neu and also depletes p185neu.” Clin Cancer Res. 5:1884–1891.

    PubMed  CAS  Google Scholar 

  • Honma, M., M. Stubbs, I. Collins, P. Workman, W. Aherne, and F.M. Watt. 2006. “Identification of novel keratinocyte differentiation modulating compounds by high-throughput screening.” J.Biomol.Screen. 11:977–984.

    PubMed  CAS  Google Scholar 

  • Hostein,I., D. Robertson, F. DiStefano, P. Workman, and P.A. Clarke. 2001. “Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis.” Cancer Res. 61:4003–9.

    PubMed  CAS  Google Scholar 

  • Huang, H.C., Y.C. Liu, S.H. Liu, B.S. Tzang, and W.C. Lee. 2002. “Geldanamycin inhibits trichostatin A-induced cell death and histone H4 hyperacetylation in COS-7 cells.” Life Sci. 70:1763–1775.

    PubMed  CAS  Google Scholar 

  • Hubbert, C., A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X.F. Wang, and T.P. Yao. 2002. “HDAC6 is a microtubule-associated deacetylase.” Nature. 417:455–458.

    PubMed  CAS  Google Scholar 

  • Ikuina, Y., N. Amishiro, M. Miyata, H. Narumi, H. Ogawa, T. Akiyama, Y. Shiotsu, S. Akinaga, and C. Murakata. 2003. “Synthesis and antitumor activity of novel O-carbamoylmethyloxime derivatives of radicicol.” J.Med.Chem. 46:2534–2541.

    PubMed  CAS  Google Scholar 

  • Itoh, H., M. Ogura, A. Komatsuda, H. Wakui, A.B. Miura, and Y. Tashima. 1999. “A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90.” Biochem.J. 343 Pt 3:697–703.

    Google Scholar 

  • Jaattela, M., D. Wissing, K. Kokholm, T. Kallunki, and M. Egeblad. 1998. “Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases.” Embo J. 17:6124–6134.

    PubMed  CAS  Google Scholar 

  • Janin, Y.L. 2005. “Heat shock protein 90 inhibitors. A text book example of medicinal chemistry?” J.Med.Chem. 48:7503–7512.

    PubMed  CAS  Google Scholar 

  • Johnson, B.D., R.J. Schumacher, E.D. Ross, and D.O. Toft. 1998. “Hop modulates Hsp70/Hsp90 interactions in protein folding.” J.Biol.Chem. 273:3679–3686.

    PubMed  CAS  Google Scholar 

  • Johnson, J., R. Corbisier, B. Stensgard, and D. Toft. 1996. “The involvement of p23, hsp90, and immunophilins in the assembly of progesterone receptor complexes.” J.Steroid Biochem.Mol.Biol. 56:31–37.

    PubMed  CAS  Google Scholar 

  • Johnson, J.L., T.G. Beito, C.J. Krco, and D.O. Toft. 1994. “Characterization of a novel 23-kilodalton protein of unactive progesterone receptor complexes.” Mol.Cell Biol. 14:1956–1963.

    PubMed  CAS  Google Scholar 

  • Jung, Y., W. Xu, H. Kim, N. Ha, and L. Neckers. 2007. “Curcumin-induced degradation of ErbB2: A role for the E3 ubiquitin ligase CHIP and the Michael reaction acceptor activity of curcumin.” Biochim.Biophys.Acta. 1773:383–390.

    PubMed  CAS  Google Scholar 

  • Kamal, A., L. Thao, J. Sensintaffar, L. Zhang, M.F. Boehm, L.C. Fritz, and F.J. Burrows. 2003. “A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors.” Nature. 425:407–10.

    PubMed  CAS  Google Scholar 

  • Kartalou, M. and J.M. Essigmann. 2001a. “Recognition of cisplatin adducts by cellular proteins.” Mutat.Res. 478:1–21.

    CAS  Google Scholar 

  • Kartalou, M. and J.M. Essigmann. 2001b. “Mechanisms of resistance to cisplatin.” Mutat.Res. 478:23–43.

    CAS  Google Scholar 

  • Kaur, G., D. Belotti, A.M. Burger, K. Fisher-Nielson, P. Borsotti, E. Riccardi, J. Thillainathan, M. Hollingshead, E.A. Sausville, and R. Giavazzi. 2004. “Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator.” Clin.Cancer Res. 10:4813–4821.

    PubMed  CAS  Google Scholar 

  • Kelland, L.R., S.Y. Sharp, P.M. Rogers, T.G. Myers, and P. Workman. 1999. “DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90.” J Natl Cancer Inst. 91:1940–9.

    PubMed  CAS  Google Scholar 

  • Kim, D., S.H. Kim, and G.C. Li. 1999. “Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression.” Biochem.Biophys.Res Commun. 254:264–268.

    PubMed  CAS  Google Scholar 

  • Kimura, E., R.E. Enns, J.E. Alcaraz, J. Arboleda, D.J. Slamon, and S.B. Howell. 1993. “Correlation of the survival of ovarian cancer patients with mRNA expression of the 60-kD heat-shock protein HSP-60.” J Clin Oncol. 11:891–898.

    PubMed  CAS  Google Scholar 

  • Kovacs, J.J., T.J. Cohen, and T.P. Yao. 2005a. “Chaperoning steroid hormone signaling via reversible acetylation.” Nucl.Recept.Signal. 3:e004.

    Google Scholar 

  • Kovacs, J.J., P.J. Murphy, S. Gaillard, X. Zhao, J.T. Wu, C.V. Nicchitta, M. Yoshida, D.O. Toft, W.B. Pratt, and T.P. Yao. 2005b. “HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor.” Mol.Cell. 18:601–607.

    CAS  Google Scholar 

  • Kristeleit, R., L. Stimson, P. Workman, and W. Aherne. 2004. “Histone modification enzymes: novel targets for cancer drugs.” Expert.Opin.Emerg.Drugs. 9:135–154.

    PubMed  CAS  Google Scholar 

  • Kwak, H.J., C.D. Jun, H.O. Pae, J.C. Yoo, Y.C. Park, B.M. Choi, Y.G. Na, R.K. Park, H.T. Chung, H.Y. Chung, W.Y. Park, and J.S. Seo. 1998. “The role of inducible 70-kDa heat shock protein in cell cycle control, differentiation, and apoptotic cell death of the human myeloid leukemic HL-60 cells.” Cell Immunol. 187:1–12.

    PubMed  CAS  Google Scholar 

  • Kwon, H.J., M. Yoshida, Y. Fukui, S. Horinouchi, and T. Beppu. 1992. “Potent and specific inhibition of p60v-src protein kinase both in vivo and in vitro by radicicol.” Cancer Res. 52:6926–6930.

    PubMed  CAS  Google Scholar 

  • Llauger, L., H. He, J. Kim, J. Aguirre, N. Rosen, U. Peters, P. Davies, and G. Chiosis. 2005. “Evaluation of 8-arylsulfanyl, 8-arylsulfoxyl, and 8-arylsulfonyl adenine derivatives as inhibitors of the heat shock protein 90.” J Med.Chem. 48:2892–2905.

    PubMed  CAS  Google Scholar 

  • Mac Donald, E., Jones, K., Brough, P.A., Drysdale, M.J., and Workman, P. 2006. “Discovery and development of pyrazole-scaffold HSP90 inhibitors.” Curr Top Med Chem. 6(11):1193–203.

    Google Scholar 

  • Maloney, A., P.A. Clarke, S.N. Hansen, R. Stein, J.O. Koopman, A. Akpan, A. Yang, M. Zvelebil, R. Cramer, L. Stimson, W. Aherne, U. Banerji, I. Judson, S.Y. Sharp, M. Powers, E. deBily, J. Salmons, M. Walton, A.L. Burlingame, M.D. Waterfield, and P. Workman. 2007. “Gene and Protein Expression Profiling of Human Ovarian Cancer Cells Treated with the Heat Shock Protein 90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin.” Cancer Res. 67:3239–3253.

    PubMed  CAS  Google Scholar 

  • Maloney, A., P.A. Clarke, and P. Workman. 2003. “Genes and proteins governing the cellular sensitivity to HSP90 inhibitors: a mechanistic perspective.” Curr Cancer Drug Targets. 3:331–41.

    PubMed  CAS  Google Scholar 

  • Maloney, A. and P. Workman. 2002. “HSP90 as a new therapeutic target for cancer therapy: the story unfolds.” Expert Opin Biol Ther. 2:3–24.

    PubMed  CAS  Google Scholar 

  • Mamelak, D., M. Mylvaganam, H. Whetstone, E. Hartmann, W. Lennarz, P.B. Wyrick, J. Raulston, H. Han, P. Hoffman, and C.A. Lingwood. 2001. “Hsp70s contain a specific sulfogalactolipid binding site. Differential aglycone influence on sulfogalactosyl ceramide binding by recombinant prokaryotic and eukaryotic hsp70 family members.” Biochemistry. 40:3572–3582.

    PubMed  CAS  Google Scholar 

  • Marcu, M. and L. Neckers. 2003. “The C-Terminal Half of Heat Shock Protein 90 Represents a Second Site for Pharmacologic Intervention in Chaperone Function.” Curr Cancer Drug Targets. 3: 343–347.

    PubMed  CAS  Google Scholar 

  • Marcu, M.G., A. Chadli, I. Bouhouche, M. Catelli, and L.M. Neckers. 2000a. “The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.” J.Biol.Chem. 275:37181–37186.

    CAS  Google Scholar 

  • Marcu, M.G., T.W. Schulte, and L. Neckers. 2000b. “Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins.” J.Natl.Cancer Inst. 92:242–248.

    CAS  Google Scholar 

  • Matthews, R.C. and J.P. Burnie. 2004. “Recombinant antibodies: a natural partner in combinatorial antifungal therapy.” Vaccine. 22:865–871.

    PubMed  CAS  Google Scholar 

  • Mayr, C., K. Richter, H. Lilie, and J. Buchner. 2000. “Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties.” J.Biol.Chem. 275:34140–34146.

    PubMed  CAS  Google Scholar 

  • McLaughlin, S.H., L.A. Ventouras, B. Lobbezoo, and S.E. Jackson. 2004. “Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform.” J.Mol.Biol. 344:813–826.

    PubMed  CAS  Google Scholar 

  • Meli, M., M. Pennati, M. Curto, M.G. Daidone, J. Plescia, S. Toba, D.C. Altieri, N. Zaffaroni, and G. Colombo. 2006. “Small-molecule targeting of heat shock protein 90 chaperone function: rational identification of a new anticancer lead.” J Med.Chem. 49:7721–7730.

    PubMed  CAS  Google Scholar 

  • Meyer, P., C. Prodromou, C. Liao, B. Hu, S.M. Roe, C.K. Vaughan, I. Vlasic, B. Panaretou, P.W. Piper, and L.H. Pearl. 2004. “Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.” EMBO J. 23:1402–1410.

    PubMed  CAS  Google Scholar 

  • Mimnaugh, E.G., W. Xu, M. Vos, X. Yuan, J.S. Isaacs, K.S. Bisht, D. Gius, and L. Neckers. 2004. “Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity.” Mol.Cancer Ther. 3:551–566.

    Google Scholar 

  • Miyata, Y. and E. Nishida. 2004. “Supervision of multiple signaling protein kinases by the CK2-Cdc37 couple, a possible novel cancer therapeutic target.” Ann.N.Y.Acad.Sci. 1030:150–157.

    PubMed  CAS  Google Scholar 

  • Miyata, Y. and E. Nishida. 2005. “CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90-cochaperone.” Mol.Cell Biochem. 274:171–179.

    PubMed  CAS  Google Scholar 

  • Modi, S., A. Stopeck, M.S. Gordon, D. Solit, W. Ma, J. Wheler, G. Cropp, R.G. Johnson, A.L. Hannah, and C. Hudis. 2006. “Phase I trial of KOS-953, a heat shock protein 90 inhibitor, and trastuzumab (T).” J Clin Oncol (Meeting Abstracts). 24:-501.

    Google Scholar 

  • Mosser, D.D. and R.I. Morimoto. 2004. “Molecular chaperones and the stress of oncogenesis.” Oncogene. 23:2907–2918.

    PubMed  CAS  Google Scholar 

  • Moulin, E., V. Zoete, S. Barluenga, M. Karplus, and N. Winssinger. 2005. “Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues.” J.Am.Chem.Soc. 127:6999–7004.

    PubMed  CAS  Google Scholar 

  • Munster, P.N., A. Basso, D. Solit, L. Norton, and N. Rosen. 2001. “Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. See: E. A. Sausville, Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters, Clin. Cancer Res., 7: 2155–2158, 2001.” Clin Cancer Res. 7:2228–36.

    PubMed  CAS  Google Scholar 

  • Murphy, P.J., Y. Morishima, J.J. Kovacs, T.P. Yao, and W.B. Pratt. 2005. “Regulation of the dynamics of hsp90 action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone.” J Biol.Chem. 280:33792–33799.

    PubMed  CAS  Google Scholar 

  • Nadeau, K., S.G. Nadler, M. Saulnier, M.A. Tepper, and C.T. Walsh. 1994. “Quantitation of the interaction of the immunosuppressant deoxyspergualin and analogs with Hsc70 and Hsp90.” Biochemistry. 33:2561–2567.

    PubMed  CAS  Google Scholar 

  • Nadler, S.G., D.D. Dischino, A.R. Malacko, J.S. Cleaveland, S.M. Fujihara, and H. Marquardt. 1998. “Identification of a binding site on Hsc70 for the immunosuppressant 15-deoxyspergualin.” Biochem.Biophys.Res Commun. 253:176–180.

    PubMed  CAS  Google Scholar 

  • Nagai, N., A. Nakai, and K. Nagata. 1995. “Quercetin suppresses heat shock response by down regulation of HSF1.” Biochem.Biophys.Res.Commun. 208:1099–1105.

    PubMed  CAS  Google Scholar 

  • Nathan, D.F., M.H. Vos, and S. Lindquist. 1999. “Identification of SSF1, CNS1, and HCH1 as multicopy suppressors of a Saccharomyces cerevisiae Hsp90 loss-of-function mutation.” Proc.Natl.Acad.Sci.U.S.A. 96:1409–1414.

    PubMed  CAS  Google Scholar 

  • Obermann, W.M., H. Sondermann, A.A. Russo, N.P. Pavletich, and F.U. Hartl. 1998. “In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis.” J.Cell Biol. 143:901–910.

    PubMed  CAS  Google Scholar 

  • Pacey, S., U. Banerji, I. Judson, and P. Workman. 2006. “Hsp90 inhibitors in the clinic.” Handb.Exp.Pharmacol.331–358.

    Google Scholar 

  • Panaretou, B., C. Prodromou, S.M. Roe, R. O’Brien, J.E. Ladbury, P.W. Piper, and L.H. Pearl. 1998. “ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.” EMBO J. 17:4829–4836.

    PubMed  CAS  Google Scholar 

  • Panaretou, B., G. Siligardi, P. Meyer, A. Maloney, J.K. Sullivan, S. Singh, S.H. Millson, P.A. Clarke, S. Naaby-Hansen, R. Stein, R. Cramer, M. Mollapour, P. Workman, P.W. Piper, L.H. Pearl, and C. Prodromou. 2002. “Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1.” Mol.Cell. 10:1307–1318.

    PubMed  CAS  Google Scholar 

  • Pearl, L.H. and C. Prodromou. 2006. “Structure and mechanism of the hsp90 molecular chaperone machinery.” Annu.Rev.Biochem. 75:271–294.

    PubMed  CAS  Google Scholar 

  • Plescia, J., W. Salz, F. Xia, M. Pennati, N. Zaffaroni, M.G. Daidone, M. Meli, T. Dohi, P. Fortugno, Y. Nefedova, D.I. Gabrilovich, G. Colombo, and D.C. Altieri. 2005. “Rational design of shepherdin, a novel anticancer agent.” Cancer Cell. 7:457–468.

    PubMed  CAS  Google Scholar 

  • Powers, M. and Workman, P. 2007. “Inhibitors of the heat shock response: Biology and pharmacology.” FEBS Lett. [Epub ahead of print].

    Google Scholar 

  • Pratt, W.B. and D.O. Toft. 1997. “Steroid receptor interactions with heat shock protein and immunophilin chaperones.” Endocr.Rev. 18:306–360.

    PubMed  CAS  Google Scholar 

  • Price, J.T., J.M. Quinn, N.A. Sims, J. Vieusseux, K. Waldeck, S.E. Docherty, D. Myers, A. Nakamura, M.C. Waltham, M.T. Gillespie, and E.W. Thompson. 2005. “The heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, enhances osteoclast formation and potentiates bone metastasis of a human breast cancer cell line.” Cancer Res. 65:4929–4938.

    PubMed  CAS  Google Scholar 

  • Prodromou, C., B. Panaretou, S. Chohan, G. Siligardi, R.O’Brien, J.E. Ladbury, S.M. Roe, P.W. Piper, and L.H. Pearl. 2000. “The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains.” EMBO J. 19:4383–4392.

    PubMed  CAS  Google Scholar 

  • Prodromou, C., G. Siligardi, R. O’Brien, D.N. Woolfson, L. Regan, B. Panaretou, J.E. Ladbury, P.W. Piper, and L.H. Pearl. 1999. “Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones.” EMBO J. 18:754–762.

    PubMed  CAS  Google Scholar 

  • Proisy, N., S.Y. Sharp, K. Boxall, S. Connelly, S.M. Roe, C. Prodromou, A.M.Z. Slawin, L.H. Pearl, P. Workman, and C.J. Moody. 2006. “Inhibition of Hsp90 with Synthetic Macrolactones: Synthesis and Structural and Biological Evaluation of Ring and Conformational Analogs of Radicicol.” Chemistry & Biology. 13:1203–1215.

    CAS  Google Scholar 

  • Ralhan, R. and J. Kaur. 1995. “Differential expression of Mr 70,000 heat shock protein in normal, premalignant, and malignant human uterine cervix.” Clin Cancer Res. 1:1217–1222.

    PubMed  CAS  Google Scholar 

  • Rao, R.V., K. Niazi, P. Mollahan, X. Mao, D. Crippen, K.S. Poksay, S. Chen, and D.E. Bredesen. 2006. “Coupling endoplasmic reticulum stress to the cell-death program: a novel HSP90-independent role for the small chaperone protein p23.” Cell Death.Differ. 13:415–425.

    PubMed  CAS  Google Scholar 

  • Ratajczak, T., B.K. Ward, and R.F. Minchin. 2003. “Immunophilin chaperones in steroid receptor signalling.” Curr.Top.Med.Chem. 3:1348–1357.

    PubMed  CAS  Google Scholar 

  • Richter, K., L.M. Hendershot, and B.C. Freeman. 2007. “The cellular world according to Hsp90.” Nat.Struct.Mol.Biol. 14:90–94.

    PubMed  CAS  Google Scholar 

  • Riggs, D.L., M.B. Cox, J. Cheung-Flynn, V. Prapapanich, P.E. Carrigan, and D.F. Smith. 2004. “Functional specificity of co-chaperone interactions with Hsp90 client proteins.” Crit Rev.Biochem.Mol.Biol. 39:279–295.

    PubMed  CAS  Google Scholar 

  • Riggs, D.L., P.J. Roberts, S.C. Chirillo, J. Cheung-Flynn, V. Prapapanich, T. Ratajczak, R. Gaber, D. Picard, and D.F. Smith. 2003. “The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo.” Embo J. 22:1158–1167.

    PubMed  CAS  Google Scholar 

  • Roe, S.M., M.M. Ali, P. Meyer, C.K. Vaughan, B. Panaretou, P.W. Piper, C. Prodromou, and L.H. Pearl. 2004. “The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37).” Cell. 116:87–98.

    PubMed  CAS  Google Scholar 

  • Roe, S.M., C. Prodromou, R.O’Brien, J.E. Ladbury, P.W. Piper, and L.H. Pearl. 1999. “Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin.” J Med Chem. 42:260–6.

    PubMed  CAS  Google Scholar 

  • Rosenhagen, M.C., C. Soti, U. Schmidt, G.M. Wochnik, F.U. Hartl, F. Holsboer, J.C. Young, and T. Rein. 2003. “The heat shock protein 90-targeting drug cisplatin selectively inhibits steroid receptor activation.” Mol.Endocrinol. 17:1991–2001.

    PubMed  CAS  Google Scholar 

  • Rossi, A., S. Ciafre, M. Balsamo, P. Pierimarchi, and M.G. Santoro. 2006. “Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer.” Cancer Res. 66:7678–7685.

    PubMed  CAS  Google Scholar 

  • Rowlands, M.G., Y.M. Newbatt, C. Prodromou, L.H. Pearl, P. Workman, and W. Aherne. 2004. “High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity.” Anal.Biochem. 327:176–183.

    PubMed  CAS  Google Scholar 

  • Rutherford, S.L. and S. Lindquist. 1998. “Hsp90 as a capacitor for morphological evolution.” Nature. 396:336–342.

    PubMed  CAS  Google Scholar 

  • Sain, N., B. Krishnan, M.G. Ormerod, A. De Rienzo, W.M. Liu, S.B. Kaye, P. Workman, and A.L. Jackman. 2006. “Potentiation of paclitaxel activity by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin in human ovarian carcinoma cell lines with high levels of activated AKT.” Mol.Cancer Ther. 5:1197–1208.

    PubMed  CAS  Google Scholar 

  • Sanderson, S., M. Valenti, S. Gowan, L. Patterson, Z. Ahmad, P. Workman, and S.A. Eccles. 2006. “Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis.” Mol.Cancer Ther. 5:522–532.

    PubMed  CAS  Google Scholar 

  • Schmitt, E., L. Maingret, P.E. Puig, A.L. Rerole, F. Ghiringhelli, A. Hammann, E. Solary, G. Kroemer, and C. Garrido. 2006. “Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma.” Cancer Res. 66:4191–4197.

    PubMed  CAS  Google Scholar 

  • Scholz, G.M., K. Cartledge, and N.E. Hall. 2001. “Identification and characterization of Harc, a novel Hsp90-associating relative of Cdc37.” J.Biol.Chem. 276:30971–30979.

    PubMed  CAS  Google Scholar 

  • Schroder, M. and R.J. Kaufman. 2005. “The mammalian unfolded protein response.” Annu.Rev.Biochem. 74:739–789.

    PubMed  Google Scholar 

  • Schulte, T.W. and L.M. Neckers. 1998. “The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin.” Cancer Chemother.Pharmacol. 42:273–279.

    PubMed  CAS  Google Scholar 

  • Scroggins, B.T., K. Robzyk, D. Wang, M.G. Marcu, S. Tsutsumi, K. Beebe, R.J. Cotter, S. Felts, D. Toft, L. Karnitz, N. Rosen, and L. Neckers. 2007. “An acetylation site in the middle domain of Hsp90 regulates chaperone function.” Mol.Cell. 25:151–159.

    PubMed  CAS  Google Scholar 

  • Sharp, S.Y., K. Boxall, M. Rowlands, C. Prodromou, S.M. Roe, A. Maloney, M. Powers, P.A. Clarke, G. Box, S. Sanderson, L. Patterson, T.P. Matthews, K.M. Cheung, K. Ball, A. Hayes, F. Raynaud, R. Marais, L. Pearl, S. Eccles, W. Aherne, E. McDonald, and P. Workman. 2007a. “In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors.” Cancer Res. 67:2206–2216.

    CAS  Google Scholar 

  • Sharp, S.Y., C. Prodromou, K. Boxall, M. Powers, J.L. Holmes, G. Box, T.P. Matthews, K.M. Cheung, A. Kalusa, A. James, A. Hayes, A. Hardcastle, B.W. Dymock, P.A. Brough, X. Barril, J.E. Cansfield, J. Wright, A. Surgenor, N. Foloppe, R.E. Hubbard, G.W. Aherne, L. Pearl, K. Jones, E. McDonald, F. Raynaud, S. Eccles, M. Drysdale, and P. Workman. 2007b. “Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues.” Mol Cancer Ther. 6:1198–1211.

    CAS  Google Scholar 

  • Shen, G. and B.S. Blagg. 2005. “Radester, a novel inhibitor of the Hsp90 protein folding machinery.” Org.Lett. 7:2157–2160.

    PubMed  CAS  Google Scholar 

  • Sliutz, G., J. Karlseder, C. Tempfer, L. Orel, G. Holzer, and M.M. Simon. 1996. “Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy.” Br.J Cancer. 74:172–177.

    PubMed  CAS  Google Scholar 

  • Smith, D.F. 2004. “Tetratricopeptide repeat cochaperones in steroid receptor complexes.” Cell Stress.Chaperones. 9:109–121.

    PubMed  CAS  Google Scholar 

  • Smith, V., E.A. Sausville, R.F. Camalier, H.H. Fiebig, and A.M. Burger. 2005a. “Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models.” Cancer Chemother.Pharmacol. 56:126–137.

    CAS  Google Scholar 

  • Smith, V., E.A. Sausville, R.F. Camalier, H.H. Fiebig, and A.M. Burger. 2005b. “Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models.” Cancer Chemother.Pharmacol. 56:126–137.

    CAS  Google Scholar 

  • Soga, S., Y. Shiotsu, S. Akinaga, and S.V. Sharma. 2003. “Development of radicicol analogues.” Curr Cancer Drug Targets. 3:359–69.

    PubMed  CAS  Google Scholar 

  • Solit, D., M.J. Egorin, V.G., A. Delacruz, Q. Ye, L. Schwartz, S. Larson, N. Rosen, and H.I. Scher. 2004. “Phase 1 pharmacokinetic and pharmacodynamic trial of docetaxel and 17AAG (17-allylamino-17-demethoxygeldanamycin).” Proc American Assoc Clin Onc. 23:Abstract 3032.

    Google Scholar 

  • Solit, D.B., F.F. Zheng, M. Drobnjak, P.N. Munster, B. Higgins, D. Verbel, G. Heller, W. Tong, C. Cordon-Cardo, D.B. Agus, H.I. Scher, and N. Rosen. 2002. “17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts.” Clin Cancer Res. 8:986–93.

    PubMed  CAS  Google Scholar 

  • Soti, C., A. Racz, and P. Csermely. 2002. “A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket.” J.Biol.Chem. 277:7066–7075.

    PubMed  CAS  Google Scholar 

  • Steed, P., H. Huang, P. Fadden, J. Rice, J. Eaves, B. Barbasz, B. Foley, J. Partridge, A. Scott, and S. Hall. 2006. SNX-2112: a novel, selective, potent small molecule inhibitor of Hsp90 with unique pharmacodynamic properties. Eur J Cancer 4 (12) Suppl, 165.

    Google Scholar 

  • Stepanova, L., G. Yang, F. DeMayo, T.M. Wheeler, M. Finegold, T.C. Thompson, and J.W. Harper. 2000. “Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia.” Oncogene. 19:2186–2193.

    PubMed  CAS  Google Scholar 

  • Supko, J.G., R.L. Hickman, M.R. Grever, and L. Malspeis. 1995. “Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent.” Cancer Chemother Pharmacol. 36:305–15.

    PubMed  CAS  Google Scholar 

  • Sydor, J.R., E. Normant, C.S. Pien, J.R. Porter, J. Ge, L. Grenier, R.H. Pak, J.A. Ali, M.S. Dembski, J. Hudak, J. Patterson, C. Penders, M. Pink, M.A. Read, J. Sang, C. Woodward, Y. Zhang, D.S. Grayzel, J. Wright, J.A. Barrett, V.J. Palombella, J. Adams, and J.K. Tong. 2006. “Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90.” Proc.Natl.Acad.Sci.U.S.A. 103:17408–17413.

    PubMed  CAS  Google Scholar 

  • Ueno, M., M. Amemiya, T. Someno, T. Masuda, H. Iinuma, H. Naganawa, M. Hamada, M. Ishizuka, and T. Takeuchi. 1993. “IC101, extracellular matrix antagonist produced by Streptomyces sp. MJ202–72F3. Production, isolation, structure determination and biological activity.” J Antibiot.(Tokyo). 46:1658–1665.

    CAS  Google Scholar 

  • Vastag, B. 2006. “HSP-90 inhibitors promise to complement cancer therapies.” Nat.Biotechnol. 24:1307.

    PubMed  CAS  Google Scholar 

  • Vaughan, C.K., U. Gohlke, F. Sobott, V.M. Good, M.M. Ali, C. Prodromou, C.V. Robinson, H.R. Saibil, and L.H. Pearl. 2006. “Structure of an Hsp90-Cdc37-Cdk4 complex.” Mol.Cell. 23:697–707.

    PubMed  CAS  Google Scholar 

  • Vilenchik, M., D. Solit, A. Basso, H. Huezo, B. Lucas, H. He, N. Rosen, C. Spampinato, P. Modrich, and G. Chiosis. 2004. “Targeting wide-range oncogenic transformation via PU24FCl, a specific inhibitor of tumor Hsp90.” Chem.Biol. 11:787–797.

    PubMed  CAS  Google Scholar 

  • Vivanco, I. and C.L. Sawyers. 2002. “The phosphatidylinositol 3-Kinase AKT pathway in human cancer.” Nat.Rev.Cancer. 2:489–501.

    PubMed  CAS  Google Scholar 

  • Wandinger, S.K., M.H. Suhre, H. Wegele, and J. Buchner. 2006. “The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90.” Embo J. 25:367–376.

    PubMed  CAS  Google Scholar 

  • Wang, X., J. Venable, P. LaPointe, D.M. Hutt, A.V. Koulov, J. Coppinger, C. Gurkan, W. Kellner, J. Matteson, H. Plutner, J.R. Riordan, J.W. Kelly, J.R. Yates, III, and W.E. Balch. 2006. “Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis.” Cell. 127: 803–815.

    PubMed  CAS  Google Scholar 

  • Weinstein, I.B. 2002. “Cancer. Addiction to oncogenes–the Achilles heal of cancer.” Science. 297:63–64.

    PubMed  CAS  Google Scholar 

  • Westerheide, S.D., J.D. Bosman, B.N. Mbadugha, T.L. Kawahara, G. Matsumoto, S. Kim, W. Gu, J.P. Devlin, R.B. Silverman, and R.I. Morimoto. 2004. “Celastrols as inducers of the heat shock response and cytoprotection.” J Biol.Chem. 279:56053–56060.

    PubMed  CAS  Google Scholar 

  • Westerheide, S.D. and R.I. Morimoto. 2005. “Heat shock response modulators as therapeutic tools for diseases of protein conformation.” J Biol.Chem. 280:33097–33100.

    PubMed  CAS  Google Scholar 

  • Whitesell, L., R. Bagatell, and R. Falsey. 2003. “The stress response: implications for the clinical development of hsp90 inhibitors.” Curr Cancer Drug Targets. 3:349–58.

    PubMed  CAS  Google Scholar 

  • Whitesell, L. and S.L. Lindquist. 2005. “HSP90 and the chaperoning of cancer.” Nat.Rev.Cancer.5:761–772.

    PubMed  CAS  Google Scholar 

  • Whitesell, L., E.G. Mimnaugh, B. De Costa, C.E. Myers, and L.M. Neckers. 1994. “Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation.” Proc Natl Acad Sci U S A. 91:8324–8.

    PubMed  CAS  Google Scholar 

  • Workman, P. 2003. “Auditing the pharmacological accounts for Hsp90 molecular chaperone inhibitors: unfolding the relationship between pharmacokinetics and pharmacodynamics.” Mol Cancer Ther. 2:131–8.

    PubMed  CAS  Google Scholar 

  • Workman, P. 2004. “Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone.” Cancer Lett. 206:149–57.

    PubMed  CAS  Google Scholar 

  • Wright, L., X. Barril, B. Dymock, L. Sheridan, A. Surgenor, M. Beswick, M. Drysdale, A. Collier, A. Massey, N. Davies, A. Fink, C. Fromont, W. Aherne, K. Boxall, S. Sharp, P. Workman, and R.E. Hubbard. 2004. “Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms.” Chem.Biol. 11:775–785.

    PubMed  CAS  Google Scholar 

  • Wu, L.X., J.H. Xu, X.W. Huang, K.Z. Zhang, C.X. Wen, and Y.Z. Chen. 2006. “Down-regulation of p210(bcr/abl) by curcumin involves disrupting molecular chaperone functions of Hsp90.” Acta Pharmacol.Sin. 27:694–699.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., R.M. Garbaccio, S.J. Stachel, D.B. Solit, G. Chiosis, N. Rosen, and S.J. Danishefsky. 2003. “Total synthesis as a resource in the discovery of potentially valuable antitumor agents: cycloproparadicicol.” Angew.Chem.Int Ed Engl. 42:1280–1284.

    PubMed  CAS  Google Scholar 

  • Yokota, S., M. Kitahara, and K. Nagata. 2000. “Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells.” Cancer Res. 60:2942–2948.

    PubMed  CAS  Google Scholar 

  • Young, J.C., V.R. Agashe, K. Siegers, and F.U. Hartl. 2004. “Pathways of chaperone-mediated protein folding in the cytosol.” Nat.Rev.Mol.Cell Biol. 5:781–791.

    PubMed  CAS  Google Scholar 

  • Yu, X., Z.S. Guo, M.G. Marcu, L. Neckers, D.M. Nguyen, G.A. Chen, and D.S. Schrump. 2002. “Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228.” J Natl Cancer Inst. 94:504–13.

    PubMed  CAS  Google Scholar 

  • Yu, X.M., G. Shen, L. Neckers, H. Blake, J. Holzbeierlein, B. Cronk, and B.S. Blagg. 2005. “Hsp90 inhibitors identified from a library of novobiocin analogues.” J.Am.Chem.Soc. 127:12778–12779.

    PubMed  CAS  Google Scholar 

  • Yufu, Y., J. Nishimura, and H. Nawata. 1992. “High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells.” Leuk.Res. 16:597–605.

    PubMed  CAS  Google Scholar 

  • Yun, B.G., W. Huang, N. Leach, S.D. Hartson, and R.L. Matts. 2004. “Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions.” Biochemistry. 43:8217–8229.

    PubMed  CAS  Google Scholar 

  • Zaarur, N., V.L. Gabai, J.A. Porco, Jr., S. Calderwood, and M.Y. Sherman. 2006. “Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors.” Cancer Res. 66:1783–1791.

    PubMed  CAS  Google Scholar 

  • Zhao, J.F., H. Nakano, and S. Sharma. 1995. “Suppression of RAS and MOS transformation by radicicol.” Oncogene. 11:161–173.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Holmes, J., Sharp, S., Workman, P. (2007). Drugging the Hsp90 molecular chaperone machine for cancer treatment. In: Calderwood, S.K., Sherman, M.Y., Ciocca, D.R. (eds) Heat Shock Proteins in Cancer. Heat Shock Proteins, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6401-2_15

Download citation

Publish with us

Policies and ethics