Skip to main content

Role of Local Renin-Angiotensin System in the Carotid Body and in Diseases

  • Chapter
Frontiers in Research of the Renin-Angiotensin System on Human Disease

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 7))

  • 371 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen AM, 1998, Angiotensin AT1 receptor-mediated excitation of rat carotid body chemoreceptor afferent activity. J Physiol. 510: 773–781.

    PubMed  CAS  Google Scholar 

  • Allen AM, MacGregor DP, McKinley MJ, Mendelsohn FA, 1999, Angiotensin II receptors in the human brain. Regul Pept. 79: 1–7.

    PubMed  CAS  Google Scholar 

  • Allen AM, McKinley MJ, Oldfield BJ, Dampney RA, Mendelsohn FA, 1988, Angiotensin II receptor binding and the baroreflex pathway. Clin Exp Hypertens A. 10 Suppl 1: 63–78.

    PubMed  Google Scholar 

  • Andreas S, Herrmann-Lingen C, Raupach T, Luthje L, Fabricius JA, Hruska N, Korber W, Buchner B, Criee CP, Hasenfuss G, Calverley P, 2006, Angiotensin II blockers in obstructive pulmonary disease: a randomised controlled trial. Eur Respir J. 27: 972–979.

    PubMed  CAS  Google Scholar 

  • Arias-Stella J, Valcarcel J, 1976, Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol. 7: 361–373.

    PubMed  CAS  Google Scholar 

  • Balla T, Baukal AJ, Eng S, Catt KJ, 1991, Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla. Mol Pharmacol. 40: 401–406.

    PubMed  CAS  Google Scholar 

  • Balla T, Baukal AJ, Hunyady L, Catt KJ, 1989, Agonist-induced regulation of inositol tetrakisphosphate isomers and inositol pentakisphosphate in adrenal glomerulosa cells. J Biol Chem. 264: 13605–13611.

    PubMed  CAS  Google Scholar 

  • Balla T, Varnai P, Tian Y, Smith RD, 1998, Signaling events activated by angiotensin II receptors: what goes before and after the calcium signals. Endocr Res. 24: 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Bao G, Metreveli N, Li R, Taylor A, Fletcher EC, 1997, Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol. 83: 95–101.

    PubMed  CAS  Google Scholar 

  • Bee D, Howard P, 1993, The carotid body: a review of its anatomy, physiology and clinical importance. Monaldi Arch Chest Dis. 48: 48–53.

    PubMed  CAS  Google Scholar 

  • Bee D, Pallot DJ, Barer GR, 1986, Division of type I and endothelial cells in the hypoxic rat carotid body. Acta Anat (Basel). 126: 226–229.

    CAS  Google Scholar 

  • Bisgard GE, 2000, Carotid body mechanisms in acclimatization to hypoxia. Respir Physiol. 121: 237–246.

    PubMed  CAS  Google Scholar 

  • Campanucci VA, Zhang M, Vollmer C, Nurse CA, 2006, Expression of multiple P2X receptors by glossopharyngeal neurons projecting to rat carotid body O2-chemoreceptors: role in nitric oxide-mediated efferent inhibition. J Neurosci. 26: 9482–9493.

    PubMed  CAS  Google Scholar 

  • Campbell DJ, 1987, Tissue renin-angiotensin system: sites of angiotensin formation. J Cardiovasc Pharmacol. 10 Suppl 7: S1–8.

    Article  PubMed  CAS  Google Scholar 

  • Campbell DJ, 2003, The renin-angiotensin and the kallikrein-kinin systems. Int J Biochem Cell Biol. 35: 784–791.

    PubMed  CAS  Google Scholar 

  • Caples SM, Wolk R, Somers VK, 2005, Influence of cardiac function and failure on sleep-disordered breathing: evidence for a causative role. J Appl Physiol. 99: 2433–2439.

    PubMed  Google Scholar 

  • Carey RM, 2005, Update on the role of the AT2 receptor. Curr Opin Nephrol Hypertens. 14: 67–71.

    PubMed  CAS  Google Scholar 

  • Carey RM, Jin X, Wang Z, Siragy HM, 2000, Nitric oxide: a physiological mediator of the type 2 (AT2) angiotensin receptor. Acta Physiol Scand. 168: 65–71.

    PubMed  CAS  Google Scholar 

  • Chen J, He L, Dinger B, Fidone S, 2000, Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides. Respir Physiol. 121: 13–23.

    PubMed  CAS  Google Scholar 

  • Chen J, He L, Dinger B, Stensaas L, Fidone S, 2002a, Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 282: L1314–1323.

    CAS  Google Scholar 

  • Chen Y, Tipoe GL, Liong E, Leung S, Lam SY, Iwase R, Tjong YW, Fung ML, 2002b, Chronic hypoxia enhances endothelin-1-induced intracellular calcium elevation in rat carotid body chemoreceptors and up-regulates ETA receptor expression. Pflugers Arch. 443: 565–573.

    CAS  Google Scholar 

  • Czyzyk-Krzeska MF, Bayliss DA, Lawson EE, Millhorn DE, 1992, Regulation of tyrosine hydroxylase gene expression in the rat carotid body by hypoxia. J Neurochem. 58: 1538–1546.

    PubMed  CAS  Google Scholar 

  • de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T, 2000, International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 52: 415–472.

    PubMed  Google Scholar 

  • Dhillon DP, Barer GR, Walsh M, 1984, The enlarged carotid body of the chronically hypoxic and chronically hypoxic and hypercapnic rat: a morphometric analysis. Q J Exp Physiol. 69: 301–317.

    PubMed  CAS  Google Scholar 

  • Donoghue S, Felder RB, Gilbey MP, Jordan D, Spyer KM, 1985, Post-synaptic activity evoked in the nucleus tractus solitarius by carotid sinus and aortic nerve afferents in the cat. J Physiol. 360: 261–273.

    PubMed  CAS  Google Scholar 

  • Donoghue S, Felder RB, Jordan D, Spyer KM, 1984, The central projections of carotid baroreceptors and chemoreceptors in the cat: a neurophysiological study. J Physiol. 347: 397–409.

    PubMed  CAS  Google Scholar 

  • Duffin J, 1990, The chemoreflex control of breathing and its measurement. Can J Anaesth. 37: 933–942.

    PubMed  CAS  Google Scholar 

  • Duffin J, Mahamed S, 2003, Adaptation in the respiratory control system. Can J Physiol Pharmacol. 81: 765–773.

    PubMed  CAS  Google Scholar 

  • Eden GJ, Hanson MA, 1987, Effects of chronic hypoxia from birth on the ventilatory response to acute hypoxia in the newborn rat. J Physiol. 392: 11–19.

    PubMed  CAS  Google Scholar 

  • Fletcher EC, 2001, Invited review: Physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol. 90: 1600–1605.

    PubMed  CAS  Google Scholar 

  • Fletcher EC, 2003, Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep. 26: 15–19.

    PubMed  Google Scholar 

  • Fletcher EC, Bao G, Li R, 1999, Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension. 34: 309–314.

    PubMed  CAS  Google Scholar 

  • Fletcher EC, Lesske J, Behm R, Miller CC, 3rd, Stauss H, Unger T, 1992a, Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol. 72: 1978–1984.

    CAS  Google Scholar 

  • Fletcher EC, Lesske J, Qian W, Miller CC, 3rd, Unger T, 1992b, Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension. 19: 555–561.

    CAS  Google Scholar 

  • Forth R, Montgomery H, 2003, ACE in COPD: a therapeutic target? Thorax. 58: 556–558.

    PubMed  CAS  Google Scholar 

  • Fung ML, 2003, Hypoxia-inducible factor-1: a molecular hint of physiological changes in the carotid body during long-term hypoxemia? Curr Drug Targets Cardiovasc Haematol Disord. 3: 254–259.

    PubMed  CAS  Google Scholar 

  • Fung ML, Lam SY, Chen Y, Dong X, Leung PS, 2001a, Functional expression of angiotensin II receptors in type-I cells of the rat carotid body. Pflugers Arch. 441: 474–480.

    CAS  Google Scholar 

  • Fung ML, Lam SY, Dong X, Chen Y, Leung PS, 2002, Postnatal hypoxemia increases angiotensin II sensitivity and up-regulates AT1a angiotensin receptors in rat carotid body chemoreceptors. J Endocrinol. 173: 305–313.

    CAS  Google Scholar 

  • Fung ML, Tipoe GL, 2003, Role of HIF-1 in physiological adaptation of the carotid body during chronic hypoxia. Adv Exp Med Biol. 536: 593–601.

    PubMed  CAS  Google Scholar 

  • Fung ML, Ye JS, Fung PC, 2001b, Acute hypoxia elevates nitric oxide generation in rat carotid body in vitro. Pflugers Arch. 442: 903–909.

    CAS  Google Scholar 

  • Ganong WF, 2000, Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol. 27: 422–427.

    PubMed  CAS  Google Scholar 

  • Gonzalez C, Almaraz L, Obeso A, Rigual R, 1994, Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev. 74: 829–898.

    PubMed  CAS  Google Scholar 

  • Greenberg HE, Sica A, Batson D, Scharf SM, 1999, Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol. 86: 298–305.

    PubMed  CAS  Google Scholar 

  • Haibara AS, Colombari E, Chianca DA, Jr., Bonagamba LG, Machado BH, 1995, NMDA receptors in NTS are involved in bradycardic but not in pressor response of chemoreflex. Am J Physiol. 269: H1421–1427.

    PubMed  CAS  Google Scholar 

  • Hanbauer I, Karoum F, Hellstrom S, Lahiri S, 1981, Effects of hypoxia lasting up to one month on the catecholamine content in rat carotid body. Neuroscience. 6: 81–86.

    PubMed  CAS  Google Scholar 

  • Honig A, 1989, Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol. 257: R1282–1302.

    PubMed  CAS  Google Scholar 

  • Iturriaga R, Rey S, Del Rio R, 2005, Cardiovascular and ventilatory acclimatization induced by chronic intermittent hypoxia: a role for the carotid body in the pathophysiology of sleep apnea. Biol Res. 38: 335–340.

    Article  PubMed  Google Scholar 

  • Izuhara Y, Nangaku M, Inagi R, Tominaga N, Aizawa T, Kurokawa K, van Ypersele de Strihou C, Miyata T, 2005, Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J Am Soc Nephrol. 16: 3631–3641.

    PubMed  CAS  Google Scholar 

  • Jain S, Wilke WL, Tucker A, 1990, Age-dependent effects of chronic hypoxia on renin-angiotensin and urinary excretions. J Appl Physiol. 69: 141–146.

    PubMed  CAS  Google Scholar 

  • Katayama K, Sato K, Matsuo H, Hotta N, Sun Z, Ishida K, Iwasaki K, Miyamura M, 2005, Changes in ventilatory responses to hypercapnia and hypoxia after intermittent hypoxia in humans. Respir Physiol Neurobiol. 146: 55–65.

    PubMed  Google Scholar 

  • Katayama K, Sato Y, Morotome Y, Shima N, Ishida K, Mori S, Miyamura M, 2001, Intermittent hypoxia increases ventilation and Sa(O2) during hypoxic exercise and hypoxic chemosensitivity. J Appl Physiol. 90: 1431–1440.

    PubMed  CAS  Google Scholar 

  • Lack EE, 1977, Carotid body hypertrophy in patients with cystic fibrosis and cyanotic congenital heart disease. Hum Pathol. 8: 39–51.

    PubMed  CAS  Google Scholar 

  • Lack EE, 1978, Hyperplasia of vagal and carotid body paraganglia in patients with chronic hypoxemia. Am J Pathol. 91: 497–516.

    PubMed  CAS  Google Scholar 

  • Lack EE, Perez-Atayde AR, Young JB, 1985, Carotid body hyperplasia in cystic fibrosis and cyanotic heart disease. A combined morphometric, ultrastructural, and biochemical study. Am J Pathol. 119: 301–314.

    PubMed  CAS  Google Scholar 

  • Lahiri S, Di Giulio C, Roy A, 2002, Lessons from chronic intermittent and sustained hypoxia at high altitudes. Respir Physiol Neurobiol. 130: 223–233.

    PubMed  Google Scholar 

  • Lahiri S, Forster RE, 2nd, 2003, CO2/H(+) sensing: peripheral and central chemoreception. Int J Biochem Cell Biol. 35: 1413–1435.

    PubMed  CAS  Google Scholar 

  • Lahiri S, Nishino T, Mokashi A, Mulligan E, 1980, Relative responses of aortic body and carotid body chemoreceptors to hypotension. J Appl Physiol. 48: 781–788.

    PubMed  CAS  Google Scholar 

  • Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR, 2006, Oxygen sensing in the body. Prog Biophys Mol Biol. 91: 249–286.

    PubMed  CAS  Google Scholar 

  • Lahiri S, Rozanov C, Cherniack NS, 2000, Altered structure and function of the carotid body at high altitude and associated chemoreflexes. High Alt Med Biol. 1: 63–74.

    PubMed  CAS  Google Scholar 

  • Lahiri S, Rozanov C, Roy A, Storey B, Buerk DG, 2001, Regulation of oxygen sensing in peripheral arterial chemoreceptors. Int J Biochem Cell Biol. 33: 755–774.

    PubMed  CAS  Google Scholar 

  • Lam SY, Leung PS, 2002, A locally generated angiotensin system in rat carotid body. Regul Pept. 107: 97–103.

    PubMed  CAS  Google Scholar 

  • Lawson EE, Richter DW, Ballantyne D, Lalley PM, 1989, Peripheral chemoreceptor inputs to medullary inspiratory and postinspiratory neurons of cats. Pflugers Arch. 414: 523–533.

    PubMed  CAS  Google Scholar 

  • Lesske J, Fletcher EC, Bao G, Unger T, 1997, Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens. 15: 1593–1603.

    PubMed  CAS  Google Scholar 

  • Leung PS, 2004, The peptide hormone angiotensin II: its new functions in tissues and organs. Curr Protein Pept Sci. 5: 267–273.

    PubMed  CAS  Google Scholar 

  • Leung PS, Chappell MC, 2003, A local pancreatic renin-angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol. 35: 838–846.

    PubMed  CAS  Google Scholar 

  • Leung PS, Fung ML, Tam MS, 2003, Renin-angiotensin system in the carotid body. Int J Biochem Cell Biol. 35: 847–854.

    PubMed  CAS  Google Scholar 

  • Leung PS, Lam SY, Fung ML, 2000, Chronic hypoxia upregulates the expression and function of AT(1) receptor in rat carotid body. J Endocrinol. 167: 517–524.

    PubMed  CAS  Google Scholar 

  • Li YL, Schultz HD, 2006, Enhanced sensitivity of Kv channels to hypoxia in the rabbit carotid body in heart failure: role of angiotensin II. J Physiol. 575: 215–227.

    PubMed  CAS  Google Scholar 

  • Li YL, Xia XH, Zheng H, Gao L, Li YF, Liu D, Patel KP, Wang W, Schultz HD, 2006, Angiotensin II enhances carotid body chemoreflex control of sympathetic outflow in chronic heart failure rabbits. Cardiovasc Res. 71: 129–138.

    PubMed  CAS  Google Scholar 

  • Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB, Jr., Mitchell GS, 2001, Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci. 21: 5381–5388.

    PubMed  CAS  Google Scholar 

  • Marshall JM, 1994, Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev. 74: 543–594.

    PubMed  CAS  Google Scholar 

  • Matsusaka T, Ichikawa I, 1997, Biological functions of angiotensin and its receptors. Annu Rev Physiol. 59: 395–412.

    PubMed  CAS  Google Scholar 

  • McGregor KH, Gil J, Lahiri S, 1984, A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol. 57: 1430–1438.

    PubMed  CAS  Google Scholar 

  • McGuire M, Zhang Y, White DP, Ling L, 2004, Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats. Am J Physiol Regul Integr Comp Physiol. 286: R334–341.

    PubMed  CAS  Google Scholar 

  • McKinley MJ, Albiston AL, Allen AM, Mathai ML, May CN, McAllen RM, Oldfield BJ, Mendelsohn FA, Chai SY, 2003, The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol. 35: 901–918.

    PubMed  CAS  Google Scholar 

  • McKinley MJ, Allen AM, Burns P, Colvill LM, Oldfield BJ, 1998, Interaction of circulating hormones with the brain: the roles of the subfornical organ and the organum vasculosum of the lamina terminalis. Clin Exp Pharmacol Physiol Suppl. 25: S61–67.

    PubMed  CAS  Google Scholar 

  • Mifflin SW, 1992, Arterial chemoreceptor input to nucleus tractus solitarius. Am J Physiol. 263: R368–375.

    PubMed  CAS  Google Scholar 

  • Millhorn DE, Czyzyk-Krzeska M, Bayliss DA, Lawson EE, 1993, Regulation of gene expression by hypoxia. Sleep. 16: S44–48.

    PubMed  CAS  Google Scholar 

  • Morrell NW, Higham MA, Phillips PG, Shakur BH, Robinson PJ, Beddoes RJ, 2005, Pilot study of losartan for pulmonary hypertension in chronic obstructive pulmonary disease. Respir Res. 6: 88.

    PubMed  Google Scholar 

  • Morrell NW, Morris KG, Stenmark KR, 1995, Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol. 269: H1186–1194.

    PubMed  CAS  Google Scholar 

  • Morrell NW, Upton PD, Kotecha S, Huntley A, Yacoub MH, Polak JM, Wharton J, 1999, Angiotensin II activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT1 receptors. Am J Physiol. 277: L440–448.

    PubMed  CAS  Google Scholar 

  • Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ, 1993, Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem. 268: 24539–24542.

    PubMed  CAS  Google Scholar 

  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE, 1991, Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 351: 233–236.

    PubMed  CAS  Google Scholar 

  • Nakamoto T, Harasawa H, Akimoto K, Hirata H, Kaneko H, Kaneko N, Sorimachi K, 2005, Effects of olmesartan medoxomil as an angiotensin II-receptor blocker in chronic hypoxic rats. Eur J Pharmacol. 528: 43–51.

    PubMed  CAS  Google Scholar 

  • Ohtake PJ, Jennings DB, 1993, Angiotensin II stimulates respiration in awake dogs and antagonizes baroreceptor inhibition. Respir Physiol. 91: 335–351.

    PubMed  CAS  Google Scholar 

  • Ohtake PJ, Walker JK, Jennings DB, 1993, Renin-angiotensin system stimulates respiration during acute hypotension but not during hypercapnia. J Appl Physiol. 74: 1220–1228.

    PubMed  CAS  Google Scholar 

  • Patel S, Woods DR, Macleod NJ, Brown A, Patel KR, Montgomery HE, Peacock AJ, 2003, Angiotensin-converting enzyme genotype and the ventilatory response to exertional hypoxia. Eur Respir J. 22: 755–760.

    PubMed  CAS  Google Scholar 

  • Peach MJ, 1977, Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev. 57: 313–370.

    PubMed  CAS  Google Scholar 

  • Peach MJ, Dostal DE, 1990, The angiotensin II receptor and the actions of angiotensin II. J Cardiovasc Pharmacol. 16 Suppl 4: S25–30.

    Article  PubMed  CAS  Google Scholar 

  • Peng YJ, Prabhakar NR, 2004, Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity. J Appl Physiol. 96: 1236–1242; discussion 1196.

    PubMed  Google Scholar 

  • Peng YJ, Rennison J, Prabhakar NR, 2004, Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol. 97: 2020–2025.

    PubMed  Google Scholar 

  • Pequignot JM, Cottet-Emard JM, Dalmaz Y, Peyrin L, 1987, Dopamine and norepinephrine dynamics in rat carotid body during long-term hypoxia. J Auton Nerv Syst. 21: 9–14.

    PubMed  CAS  Google Scholar 

  • Potter EK, McCloskey DI, 1979, Respiratory stimulation by angiotensin II. Respir Physiol. 36: 367–373.

    PubMed  CAS  Google Scholar 

  • Prabhakar NR, 2001, Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J Appl Physiol. 90: 1986–1994.

    PubMed  CAS  Google Scholar 

  • Prabhakar NR, Fields RD, Baker T, Fletcher EC, 2001, Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol. 281: L524–528.

    PubMed  CAS  Google Scholar 

  • Prabhakar NR, Kumar GK, 2004, Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biol Chem. 385: 217–221.

    PubMed  CAS  Google Scholar 

  • Prabhakar NR, Peng YJ, 2004, Peripheral chemoreceptors in health and disease. J Appl Physiol. 96: 359–366.

    PubMed  CAS  Google Scholar 

  • Prabhakar NR, Peng YJ, Jacono FJ, Kumar GK, Dick TE, 2005, Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol. 32: 447–449.

    PubMed  CAS  Google Scholar 

  • Raff H, Shinsako J, Dallman MF, 1984, Renin and ACTH responses to hypercapnia and hypoxia after chronic carotid chemodenervation. Am J Physiol. 247: R412–417.

    PubMed  CAS  Google Scholar 

  • Reid IA, Morris BJ, Ganong WF, 1978, The renin-angiotensin system. Annu Rev Physiol. 40: 377–410.

    PubMed  CAS  Google Scholar 

  • Rey S, Del Rio R, Alcayaga J, Iturriaga R, 2004, Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J Physiol. 560: 577–586.

    PubMed  CAS  Google Scholar 

  • Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T, 1991, Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature. 351: 230–233.

    PubMed  CAS  Google Scholar 

  • Serova ON, Shevchenko LV, Elfimov AI, Kotov AV, Torshin VI, 2004, Water and salt consumption and suppression of Angiotensin-induced thirst in rats after carotid glomectomy. Bull Exp Biol Med. 138: 437–439.

    PubMed  CAS  Google Scholar 

  • Simpson JB, 1981, The circumventricular organs and the central actions of angiotensin. Neuroendocrinology. 32: 248–256.

    PubMed  CAS  Google Scholar 

  • Steckelings UM, Kaschina E, Unger T, 2005, The AT2 receptor–a matter of love and hate. Peptides. 26: 1401–1409.

    PubMed  CAS  Google Scholar 

  • Takahashi S, Nakamura Y, Nishijima T, Sakurai S, Inoue H, 2005, Essential roles of angiotensin II in vascular endothelial growth factor expression in sleep apnea syndrome. Respir Med. 99: 1125–1131.

    PubMed  Google Scholar 

  • Tipoe GL, Fung ML, 2003, Expression of HIF-1alpha, VEGF and VEGF receptors in the carotid body of chronically hypoxic rat. Respir Physiol Neurobiol. 138: 143–154.

    PubMed  CAS  Google Scholar 

  • Tipoe GL, Lau TY, Nanji AA, Fung ML, 2006, Expression and functions of vasoactive substances regulated by hypoxia-inducible factor-1 in chronic hypoxemia. Cardiovasc Hematol Agents Med Chem. 4: 199–218.

    PubMed  CAS  Google Scholar 

  • Tsianos G, Eleftheriou KI, Hawe E, Woolrich L, Watt M, Watt I, Peacock A, Montgomery H, Grant S, 2005, Performance at altitude and angiotensin I-converting enzyme genotype. Eur J Appl Physiol. 93: 630–633.

    PubMed  CAS  Google Scholar 

  • Wolf G, 2005, Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal. 7: 1337–1345.

    PubMed  CAS  Google Scholar 

  • Woods DR, Montgomery HE, 2001, Angiotensin-converting enzyme and genetics at high altitude. High Alt Med Biol. 2: 201–210.

    PubMed  CAS  Google Scholar 

  • Woods DR, Pollard AJ, Collier DJ, Jamshidi Y, Vassiliou V, Hawe E, Humphries SE, Montgomery HE, 2002, Insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and arterial oxygen saturation at high altitude. Am J Respir Crit Care Med. 166: 362–366.

    PubMed  Google Scholar 

  • Yamamoto Y, Konig P, Henrich M, Dedio J, Kummer W, 2006, Hypoxia induces production of nitric oxide and reactive oxygen species in glomus cells of rat carotid body. Cell Tissue Res. 325: 3–11.

    PubMed  CAS  Google Scholar 

  • Ye JS, Tipoe GL, Fung PC, Fung ML, 2002a, Augmentation of hypoxia-induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia: an involvement of constitutive and inducible nitric oxide synthases. Pflugers Arch. 444: 178–185.

    CAS  Google Scholar 

  • Ye S, Zhong H, Duong VN, Campese VM, 2002b, Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension. Hypertension. 39: 1101–1106.

    CAS  Google Scholar 

  • Zakheim RM, Mattioli L, Molteni A, Mullis KB, Bartley J, 1975, Prevention of pulmonary vascular changes of chronic alveolar hypoxia by inhibition of angiotensin I-converting enzyme in the rat. Lab Invest. 33: 57–61.

    PubMed  CAS  Google Scholar 

  • Zakheim RM, Molteni A, Mattioli L, Park M, 1976, Plasma angiotensin II levels in hypoxic and hypovolemic stress in unanesthetized rabbits. J Appl Physiol. 41: 462–465.

    PubMed  CAS  Google Scholar 

  • Zhang W, Mifflin SW, 1993, Excitatory amino acid receptors within NTS mediate arterial chemoreceptor reflexes in rats. Am J Physiol. 265: H770–773.

    PubMed  CAS  Google Scholar 

  • Zucker IH, Liu JL, 2000, Angiotensin II–nitric oxide interactions in the control of sympathetic outflow in heart failure. Heart Fail Rev. 5: 27–43.

    PubMed  CAS  Google Scholar 

  • Zucker IH, Schultz HD, Li YF, Wang Y, Wang W, Patel KP, 2004, The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide. Prog Biophys Mol Biol. 84: 217–232.

    PubMed  CAS  Google Scholar 

  • Zucker IH, Wang W, Pliquett RU, Liu JL, Patel KP, 2001, The regulation of sympathetic outflow in heart failure. The roles of angiotensin II, nitric oxide, and exercise training. Ann N Y Acad Sci. 940: 431–443.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Fung, M.L., Leung, P.S. (2007). Role of Local Renin-Angiotensin System in the Carotid Body and in Diseases. In: Leung, P.S. (eds) Frontiers in Research of the Renin-Angiotensin System on Human Disease. Proteases in Biology and Disease, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6372-5_8

Download citation

Publish with us

Policies and ethics