Skip to main content

MAX-DOAS Measurements of ClO, SO2 and NO2 in the Mid-Latitude Coastal Boundary Layer and a Power Plant Plume

  • Chapter
Advanced Environmental Monitoring

Remote sensing techniques have been preferred for measurements of atmospheric trace gases because they allow direct measurement without pre- and/or post-treatment in the laboratory. UV–visible absorption measurement techniques have been used for ground-based remote sensing of atmospheric trace species. The multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, one of the remote sensing techniques for air quality measurement, uses scattered sunlight as a light source and measures it at various elevation angles by sequential scanning with a stepper motor. Ground-based MAX-DOAS measurements were carried out to investigate ClO, SO2 and NO2 levels in the mid-latitude coastal boundary layer from 27 May to 9 June, 2005, and SO2 and NO2 levels in fossil fuel power plant plumes from 10 to 14 January 2004. MAX-DOAS data were analyzed to identify and quantify ClO, SO2 and NO2 by utilizing their specifi c structured absorption features in the UV region. Differential slant column densities (dSCDs) for ClO, SO2 and NO2 were as high as 7.3 × 1014, 2.4 × 1016 and 6.7 × 1016 molecules/cm2 (with mean dSCDs of 2.3 × 1014, 8.0 × 1015 and 1.2 × 1016 molecules/cm2), respectively, at a 3° elevation angle in the coastal boundary layer during the measurement period. Based on the assumption that the trace gases were well mixed in the 1 km height of the boundary layer, estimates of the mean mixing ratios of ClO, SO2 and NO2 during the measurement period were 8.4 (±4.3), 296 (±233) and 305 (±284) pptv, respectively. MAX-DOAS measurement of the power plant plumes involved making vertical scans through multiple elevation angles perpendicular to the plume dispersion direction to yield cross-sectional distributions of ClO, SO2 and NO2 in the plume in terms of SCDs. Mixing ratios based on the estimated cross-sections of the plumes were 15.5 (ClO), 354 (SO2) and 210 (NO2) ppbv in the plumes of the fossil fuel power plant.

Keywords: Air pollution, chlorine monoxide, DOAS, remote sensing

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrie L. and Platt, U. (1997), Artic tropospheric chemistry: An overview, Tellus, 49B, 450–454.

    CAS  Google Scholar 

  • Bobrowski N., Hönninger G., Galle B., and Platt U. (2003), Detection of bromine monoxide in a volcanic plume, Nature, 423, 273–276.

    Article  CAS  Google Scholar 

  • Bogumil K., Orphal J., Homann T., Voigt S., Spietz P., Fleischmann O.C., Vogel A., Hartmann M., Bovensmann H., Frerik J., and Burrows J.P. (2003), Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region, J.Photoch. Photobiol. A, 157, 167–184.

    Article  CAS  Google Scholar 

  • Chance K.V. and Spurr R.J.D. (1997), Ring effect studies: Rayleigh scattering, including molecular parameter for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Optics, 36, 5224–5230.

    Article  CAS  Google Scholar 

  • Fan S.-M. and Jacob D.J. (1992), Surface ozone depletion in Artic spring sustained by bromine reaction on aerosols, Nature, 359, 522–524.

    Article  CAS  Google Scholar 

  • Farman J.C., Gardiner B.G., and Shaklin J.D. (1985), Large losses of total ozone in Antarctica reveal seasonal ClO x /NO x interaction, Nature, 315, 207–210.

    Article  CAS  Google Scholar 

  • Fish D.J. and Jones R.L. (1995), Rotational Raman scattering and the ring effect in zenith-sky spectra, Geophys. Res. Lett., 22, 811–814.

    Article  CAS  Google Scholar 

  • Greenblatt G.D., Orlando J.J., Burkholder J.B., and Ravishankara A.R. (1990), Absorption measurements of oxygen between 330 and 1140 nm, J. Geophys. Res., 95, 18, 577–582.

    Google Scholar 

  • Hausmann M. and Platt U. (1994), Spectroscopic measurement of bromine oxide and ozone in the high Arctic during polar sunrise experiments 1992, J. Geophys. Res., 99, 25, 399–413.

    Google Scholar 

  • Hebestreit K., Stutz J., Rosen D., Matveiv V., Pelg M., Luria M., and Platt U. (1999), DOAS measurements of tropospheric bromine oxide in mid-latitudes, Science, 283, 55–57.

    Article  CAS  Google Scholar 

  • Hönninger G., von Friedeburg C., and Platt U. (2004), Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmos. Chem. Phys., 4, 231–254.

    Article  Google Scholar 

  • Lee C., Choi Y.J., Jung J.S., Lee J.S., Kim Y.J., and Kim, K.H. (2005a), Measurement of atmospheric monoaromatic hydrocarbons using differential optical absorption spectroscopy: Comparison with on-line gas chromatography measurements in urban air, Atmos. Environ., 39, 2225–2234.

    Article  CAS  Google Scholar 

  • Lee C., Kim Y.J., Tanimoto H., Bobrowski N., Platt U., Mori T., Yamamoto K., and Hong C.S. (2005b), High ClO and ozone depletion observed in the plume of Sakurajima volcano, Geophys. Res. Lett., 32, DOI 10.1029/2005GL023785.

    Google Scholar 

  • Leser H., Hönninger G., and Platt U. (2003), MAX-DOAS measurements of BrO and NO2 in the marine boundary layer, Geophys. Res. Lett., 30, DOI 10.1029/2002GL015811.

    Google Scholar 

  • Marchand M., Bekki S., Lefèvere F., Hauchecorne A., Godin-Beckmann S., and Chipperfield M.P. (2004), Model simulations of the northern extravortex ozone column: Influence of past changes in chemical composition, J. Geophys. Res., 109, DOI 10.1029/2003JD003634.

    Google Scholar 

  • McElroy C.T., McLinden C.A., and McConnell J.C. (1999), Evidence for bromine monoxide in the free troposphere during the Arctic polar sunrise, Nature, 397, 338–341.

    Article  CAS  Google Scholar 

  • McElroy M.B., Salawitch R.J., Wofsy C.S., and Logan J.A. (1986), Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine, Nature, 321, 759–762.

    Article  CAS  Google Scholar 

  • Meller R. and Moortgat G.K. (2000), Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm, J. Geophys. Res., 105, 7089–7101.

    Article  CAS  Google Scholar 

  • Mozurkewich M. (1995), Mechanisms of the release of halogen atom sea-salt particles by free radical reactions, J. Geophys. Res., 100, 14, 199–207.

    Google Scholar 

  • Platt U. (1994), Differential optical absorption spectroscopy (DOAS). In M.W. Sigrist (Eds.), Monitoring by Spectroscopic Techniques, Wiley, New York, pp. 27–84.

    Google Scholar 

  • Platt U. and Hönninger G. (2003), The role of halogen species in the trosposphere, Chemosphere, 52, 325–338.

    Article  CAS  Google Scholar 

  • Salawitch R.J. (2006), Atmospheric chemistry: Biogenic bromine, Nature, 439, 275–277.

    Article  CAS  Google Scholar 

  • Sander R. and Crutzen P.J. (1996), Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res., 101, 9121–9138.

    Article  CAS  Google Scholar 

  • Schall C. and Heumann K. (1993), GC determination of volatile organoiodine and organobromine compounds in seawater and air samples, Fresen. J. Anal. Chem., 346, 717–722.

    Article  CAS  Google Scholar 

  • Saiz-Lopez A. and Plane J.M.C. (2004), Novel iodine chemistry in the marine boundary layer, Geophys. Res. Lett., 31, DOI 10.1029/2003GL019215.

    Google Scholar 

  • Saiz-Lopez A., Plane J.M.C., and Shillito J.A. (2004), Bromine oxide in the mid-latitude marine boundary layer, Geophys. Res. Lett., 31, DOI 10.1029/2003GL018956.

    Google Scholar 

  • Simon F.G., Schneider W., Moortgat G.K., and Burrows J.P. (1990), A study of the ClO absorption cross-section between 240 and 310 nm and the kinetics of the self-reaction at 300 K J. Photoch. Photobiol. A, 55, 1–23.

    Article  CAS  Google Scholar 

  • Solomon S. (1990), Progress towards a quantitative understanding of Antarctic ozone depletion, Nature, 347, 347–354.

    Article  CAS  Google Scholar 

  • Solomon S., Garcia F.S., Rowland F.S., and Wuebbles D.J. (1986), On the depletion of Antarctic ozone, Nature, 321, 755–758.

    Article  CAS  Google Scholar 

  • Stutz J. and Platt U. (1996), Numerical analysis and error estimation of differential optical absorption spectroscopy measurements least-squares methods, Appl. Optics, 35, 6041–6053.

    Article  CAS  Google Scholar 

  • Stutz J., Ackermann R., Fast J.D., and Barrie L. (2002), Atmospheric reactive chloride and bromine at the Great Salt Lake, Utah, Geophys. Res. Lett., 29, DOI 10.1029/2002GL014812.

    Google Scholar 

  • Tuckermann M., Ackermann R., Gölz C., Lorezen-Schmidt H., Senne T., Stutz J., Trost B., Unold W., and Platt U. (1997), DOAS-observation of halogen radical-catalysed arctic boundary layer ozone destruction during the ARCTOC-campaigns 1995 and 1996 in Ny-Ålesund, Spitshergen, Tellus, 49B, 533–555.

    CAS  Google Scholar 

  • Vandaele A.C., Hermans C., Simon P.C., Carleer M., Colin R., Fally S., Mérienne M.-F., Jenouvrier A., and Coquart B. (1997), Measurements of the NO2 absorption cross-section from 42000 cm−1 to 10000 cm−1 (238–1000 nm) at 220 K and 294 K, J. Quant. Spectrosc. Radiative. Transf., 59, 171–184.

    Article  Google Scholar 

  • Van Roozendael M. and Fayt C. (2001), WinDOAS 2.1 Software User Mannual. (Uccle, IASB/BIRA).

    Google Scholar 

  • Vogt R., Crutzen P.J., and Sander R. (1996), A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327–330.

    Article  CAS  Google Scholar 

  • Wagner T. and Platt U. (1998), Satellite mapping of enhanced BrO concentrations in the troposphere, Nature, 395, 486–490.

    Article  CAS  Google Scholar 

  • von Friedeburg C., Hönninger G., and Platt U. (2005), Multi-axis-DOAS measurements of NO2 during the BAB II motorway emission campaign, Atmos. Environ., 39, 977–985.

    Article  CAS  Google Scholar 

  • von Glasow R., Sander R., Bott A., and Crutzen P.J. (2002), Modelling halogen chemistry in the marine boundary layer 1. Cloud-free MBL, J. Geophys. Res., 107(D17), DOI 10.1029/2001JD000942.

    Google Scholar 

  • Wayne R.P., Poulet G., Biggs P., Burrows J.P., Cox R.A., Crutzen P.J., Hayman G.D., Jenkin M.E., Bras G.L., Moortgat G.K., Platt U., and Schindler R.N. (1995), Halogen oxides: Radicals, sources and reservoirs in the laboratory and in the atmosphere, Atmos. Environ., 29, 2677–2881.

    Article  CAS  Google Scholar 

  • Wilmouth D.M., Hanisco T.F., Donahue N.M., and Anderson J.G. (1999), Fourier transfer ultraviolet spectroscopy of the A2P3/2 X2P3/2 transition of BrO, J. Phys. Chem. A, 103, 8935–8945.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Lee, C., Kim, Y.J., Lee, H., Choi, B.C. (2008). MAX-DOAS Measurements of ClO, SO2 and NO2 in the Mid-Latitude Coastal Boundary Layer and a Power Plant Plume. In: Kim, Y.J., Platt, U. (eds) Advanced Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6364-0_3

Download citation

Publish with us

Policies and ethics