Skip to main content

The Mathematical Structure of the Genetic Code

  • Chapter

Part of the book series: Biosemiotics ((BSEM,volume 1))

In this chapter a new mathematical theory of the genetic code is presented, based on a particular kind of number representation: a non-power binary representation. A mathematical model is constructed that allows the description of many known properties of the genetic code, such as the degeneracy distribution and the specific codon-amino acid assignation, and also of some new properties such as, for example, palindromic symmetry (a degeneracy preserving transformation), which is shown to be the highest level of a series of hierarchical symmetries. The role of chemical dichotomy classes, which varies between purine–pyrimidine, amino–keto, and strong–weak following the position of the bases in the codon frame, is shown. A new characterization of codons, obtained through the parity of the corresponding binary strings in the mathematical model, together with the associated symbolic structure acting on the codon space, is also illustrated. Furthermore, it is shown that Rumer’s classes (or degeneracy classes) can be obtained symbolically from the two first letters of a codon by means of an operation, which is identical to that of parity determination from a structural point of view. On this basis, the existence of a third dichotomy class sharing the former properties can be hypothesized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson J.C., Wu N., Santoro S.W., Lakshman V., King D.S., and Schultz P.G., An expanded genetic code with a functional quadruplet codon, Proc. Natl. Acad. Sci. USA, 101(20), 7566–7571, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Bollt E., Review of chaos communication by feedback control of symbolic dynamics, Inter. J. Bifur. Chaos, 13(2), 269–283, 2003.

    Article  Google Scholar 

  • Britten R.J., Forbidden synonymous substitutions in coding regions, Mol. Biol. Evol., 10(1), 205–220, 1993.

    CAS  PubMed  Google Scholar 

  • Brown T.A., Genomes, 2nd edn, Wiley, New York, 2002.

    Google Scholar 

  • Cartwright J., Gonzalez D.L., and Piro O., Nonlinear dynamics of the perceived pitch of complex sounds, Phy. Rev. Lett., 82(26), 5389–5392, 1999a.

    Article  CAS  Google Scholar 

  • Cartwright J., Gonzalez D.L., Piro O., and Zanna M., Teoria dei sistemi dinamici: una base matematica per i fenomeni non-lineari in biologia, Sistema Naturae., 2, 215–254, 1999b.

    Google Scholar 

  • Cartwright J., Gonzalez D.L., and Piro O., Pitch perception: a dynamical-systems perspective, PNAS, 98(9), 4855–4859, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Chechetkin V.R., Block structure and stability of the genetic code, J. Theo. Biol., 222, 177–188, 2003.

    Article  CAS  Google Scholar 

  • Corron N.J. and Pethel S.D., Phys. Lett. A, 313, 192, 2003.

    Article  CAS  Google Scholar 

  • Crick F.H.C., The origin of the genetic code, J. Mol. Biol., 38, 367–379, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M., On the origin of the genetic code, J. Theor. Biol., 191, 573–581, 1997.

    Article  Google Scholar 

  • Fordsyke D., Are introns in-series error-detecting sequences? J. Theor. Biol., 93, 861–866, 1981.

    Article  Google Scholar 

  • Fuss J.O. and Cooper P.K., DNA repair: dynamic defenders against cancer and aging, PloS Biol., 4(5), 899–903, 2006.

    CAS  Google Scholar 

  • Geronimi N., Giochi Matematici del Medioevo, Bruno Mondadori Editori, 2006.

    Google Scholar 

  • Gonzalez D.L., Syncronization and Chaos in Nonlinear Oscillators, (in Spanish), PhD thesis, Universidad Nacional de La Plata, 1987, 393 pp.

    Google Scholar 

  • Gonzalez D.L., Can the genetic code be mathematically described? Med. Sci. Monitor, 10(4), HY11–17, 2004.

    CAS  Google Scholar 

  • Gonzalez D.L. and Rosso O.A., Qualitative modeling of complex biological systems, Proceedings of the Second Italian-Latinamerican Meeting of Applied Mathematics, Rome, 1997, pp. 132–135.

    Google Scholar 

  • Gonzalez D.L. and Zanna M., Una Nuova Descrizione Matematica del Codice Genetico, Sistema Naturae, Annali di Biologia Teorica, 5, 219–236, 2003.

    Google Scholar 

  • Gonzalez D.L., Giannerini S., and Rosa R., Detecting structure in parity binary sequences: error correction and detection in DNA, IEEE Eng. Med. Biol. Mag., 25(1), 69–81, 2006.

    Article  PubMed  Google Scholar 

  • Gusev A.V. and Schulze-Makuch D., Genetic code: lucky chance or fundamental law of nature? Phy. Life Rev., 1, 202–229, 2004.

    Article  Google Scholar 

  • Hao B. and Zheng W., Applied Symbolic Dynamics and Chaos, World Scientific, Singapore, 1998.

    Google Scholar 

  • Hayes B., The invention of the genetic code, Comp. Sci., 86(14), 8–14, 1998.

    Google Scholar 

  • Hatfield D.L. and Gladyshev V.N., How selenium has altered our understanding of the genetic code, Mol. Cell. Biol., 22(11), 3565–3576, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hoppensteadt F.C. and Izhikevich E.M., Thalamo-cortical interactions modelled by weakly connected oscillators: could the brain use FM radio principles? Bio Syst., 48, 85–94, 1998.

    CAS  Google Scholar 

  • Izhikevich E.M., Weakly connected quasi-periodic oscillators, FM interactions, and multiplexing in the brain, SIAM, J. Appl. Math., 59(6), 2193–2223, 1999.

    Google Scholar 

  • Jimenez-Montaño, M.A., Protein evolution drives the evolution of the genetic code and viceversa, BioSyst., 54, 47–64, 1999.

    Article  Google Scholar 

  • Karasev V.A. and Stefanov V.E., Topological structure of the genetic code, J. Theor. Biol, 209, 303–317, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Knight R.D., Freeland S.J., and Landweber L.F., Rewiring the keyboard: evolvability of the genetic code, Nat. Rev. Genet., 2, 49–58, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J., Physico-chemical constraints connected with the coding properties of the genetic system, J. Theor. Biol., 202, 129–144, 2002.

    Article  CAS  Google Scholar 

  • Lewin, B., Genes VIII, Pearson/Prentice Hall, New Jersey, 2004.

    Google Scholar 

  • Liebovitch L.S., Tao Y., Todorov A.T., and Levine L., Is there error-correcting code in the base sequence of DNA? Biophys. J., 71, 1539–1544, 1996.

    Article  CAS  PubMed  Google Scholar 

  • May E.E., Vouk M.A., and Bitzer D.L., Classification of Escherichia coli K-12 ribosome binding sites, IEEE Eng. Med. Biol. Mag., 25(1), 90–97, 2006.

    Article  PubMed  Google Scholar 

  • May E.E. (ed), Special issue on communication theory and molecular biology, IEEE Eng. Med. Biol. Mag., 25(1), 28–97, 2006.

    Google Scholar 

  • Mac Donaill D.A., A parity code interpretation of nucleotide alphabet composition, Chem. Commun., 18, 2062–2063, 2002.

    Google Scholar 

  • Mojzsis S.J., Arrhenius G., McKeegan K., Harrison T.M., Nutman A.P., and Friend C.R., Evidence for life on earth before 3,800 million years ago, Nature, 384, 55–59, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Négadi T., Symmetry groups for the Rumer- Konopel’chenko-shCherbak Bisections of the genetic code and applications, Internet Elect. J. Mol. Design, 3, 247–270, 2004.

    Google Scholar 

  • Ore O., Number Theory and its History, Dover Publications, New York, 1988.

    Google Scholar 

  • Pethel S.D., Corron N.J., Underwood Q.R., and Myneni, K., Phys. Rev. Lett. 90, 254101, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rumer Y.B., About the codon’s systematization in the genetic code, (in Russian), Proc. Acad. Sci. U.S.S.R. (Doklady), 167, 1393, 1966.

    CAS  Google Scholar 

  • Rzeszowska-Wolny J., Is genetic code error correcting? J. Theoret. Biol., 104(4), 701–702, 1983.

    Article  CAS  Google Scholar 

  • Schopf J. W., Microfossils of the early Archean apex chert: new evidence of the antiquity of life, Science, 260, 640–646, 1993.

    Article  CAS  PubMed  Google Scholar 

  • shCherbak V.I., The symmetrical architecture of the genetic code systematization principle. J. Theor. Biol., 162, 395–398, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Schroeder M., Number Theory in Science and Communication, Springer Verlag, Berlin, 1986.

    Google Scholar 

  • Smith J.M. and Szathmáry E., The Major Transitions in Evolution, Oxford University Press, New York, 1995, p.81.

    Google Scholar 

  • Sweeney P., Error Control Coding: From Theory to Practice, Wiley, New York, 2002.

    Google Scholar 

  • Watanabe K. and Suzuki T., Genetic Code and its variants, in Encyclopedia of Life Sciences, Wiley, Chichester, 2001. Available at: http://www.els.net/doi:101038.npg.els.0000810

  • Weberndorfer G., Computational Models of the Genetic Code Evolution Based on Empirical Potentials, PhD thesis, Wien University, 2002.

    Google Scholar 

  • Wolfram S.A., A New Kind of Science, Wolfran Media, Illinois, 2002.

    Google Scholar 

  • Yockey H.P., Information Theory and Molecular Biology, Cambridge University Press, New York, 1992.

    Google Scholar 

  • Zeckendorf E., Représentation des nombres naturels par un somme de nombres de Fibonacci ou de nombres de Lucas, Bulletin de la Societé Royale ds Sciences de Liege, 41, 179–182, 1972.

    Google Scholar 

  • Zhaxybayeva O., Statistical estimation of Rumer’s transformation of the universal genetic code, ISSOL’96 Conference on the Origins of Life, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Gonzalez, D.L. (2008). The Mathematical Structure of the Genetic Code. In: Barbieri, M., Hoffmeyer, J. (eds) The Codes of Life. Biosemiotics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6340-4_6

Download citation

Publish with us

Policies and ethics