Skip to main content

Signal Transduction Codes and Cell Fate

  • Chapter
The Codes of Life

Part of the book series: Biosemiotics ((BSEM,volume 1))

In cells in general, regardless of their identity and functional status, the mediators of signal transduction (ST), the classic second messengers, are highly conserved: calcium, cAMP, nitric oxide, phosphorylation cascades, etc. At the same time, they are significantly less numerous than the extracellular signals (or first messengers) they represent, suggesting that this universal conversion of signals into second messengers follows the conventional rules of an organic code. Nevertheless, the way these second messengers are integrated and the consequences they trigger change dramatically according to cell organization – its structure and function. Here we examine ST beyond the generation of second messengers, and more as the ability of a cell in its different configurations to assign meaning to signals through discrimination of their context. In metabolism, cell cycle, differentiation, neuronal, and immune function the circuitry operating at cell level will proceed by the creation of conventional links between an increasing number of physiological activities, that is, changes in environment are progressively coupled to: transcription patterns; transcription and replication patterns; transcription, replication, and differentiation patterns; and transcription, replication, differentiation, and functional patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Körner S (1984) Metaphysics. University Press, Cambridge

    Google Scholar 

  2. Faria M (2006). RNA as Code Makers: A Biosemiotic view of Rnai and Cell Immunity, in Introduction to Biosemiotics. In: Marcello Barbieri (ed) Springer, Dordrecht, The Nethelands

    Google Scholar 

  3. Huang S, Eichler G, Bar-Yam Y, and Ingber, DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phy Rev Lett 94 (12):128701–128704

    Article  Google Scholar 

  4. Edelman G (2004) Biochemistry and the sciences of recognition. J Biol Chem 279(9):7361–7369

    Article  CAS  PubMed  Google Scholar 

  5. Bourret R (2006) Census of prokaryotic senses. J Bacteriol 188(12):4165–4168

    Article  CAS  PubMed  Google Scholar 

  6. Bruni LE. (2006).Cellular semiotics and signal transduction. In: Barbieri M (ed) Introduction to Biosemiotics. Springer, Dordrecht, The Netherlands

    Google Scholar 

  7. Barbieri M (2003) The Organic Codes. University Press, Cambridge

    Google Scholar 

  8. Emmeche C (1999) The Sakar challenge to biosemiotics: is there any information in a cell? Semiotica, 127(1/4):273–293

    Article  Google Scholar 

  9. Falke JJ et al. (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases and adaptor enzymes. Annu Rev Cell Dev Biol 13:457–512

    Article  CAS  PubMed  Google Scholar 

  10. Mendenhall MD and Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisae. Microbiol Mol Biol Rev 62:1191–1243

    CAS  PubMed  Google Scholar 

  11. DiNardo S, Heemskerk J, Dougan S, O’Farrell PH (1994) The making of maggot:patterning the Drosophila embryonic epidermis. Curr Opin Genet Dev 4:529–534

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan D, Weinberg RA. (2000). The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  13. Bateson G (1979) Mind and Nature. A Necessary Unity. Bantam Books, New York

    Google Scholar 

  14. Nixon BT, Ronson CW, Ausubel FM (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB. Proc Natl Acad Sci USA 83:7850–7854

    Article  CAS  PubMed  Google Scholar 

  15. Stock A, Koshland D, Stock J (1985) Homologies between the Salmonella typhimurium Che Y protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc Natl Acad Sci USA 82:7989–7993

    Article  CAS  PubMed  Google Scholar 

  16. Galperin M (2006) Response regulators encoded in bacterial and archael genomes. Available at: http://www.ncbi.nlm.nih.gov/Complete-Genomes/RRcensus.html

  17. Bijlsma J, Grisman E (2003) Making informed decisions: regulatory interactions between two-componentsystems. Trends Microbiol 11:359–364

    Article  CAS  PubMed  Google Scholar 

  18. Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcription regulation network of Escherichia coli. Nature Genetics 31:64–69

    Article  CAS  PubMed  Google Scholar 

  19. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Alon U (2002) Network Motifs: simple building blocks of complex networks. Science 298:824–829

    Article  CAS  PubMed  Google Scholar 

  20. Dobrin R, Beg Q, Barabasi A, Oltvai Z (2004) Aggregation of topological motifs in the E. coli transcriptional regulatory network. BMC Bioinformat 5:10–13

    Article  Google Scholar 

  21. Keener J, Sneyd J (1998) Mathematical Physiology. Springer Books, Berlin

    Google Scholar 

  22. Fall C, Marland E, Wagner J, Tyson J (2002) Computational Cell Biology. Springer Books, Berlin

    Google Scholar 

  23. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in cells. Current Opin. Cell Biol. 15:221–231

    Article  CAS  Google Scholar 

  24. Cohen IR (2004) Tending Adam’s Garden. Elsevier, London

    Google Scholar 

  25. Hidetsugu K, Yota M (2005) Transcription factors and DNA replication origin selection. BioEssays 27:1107–1116

    Article  Google Scholar 

  26. Raper, KB (1940) The communal nature of the fruiting process in the acrasiae. Am. J. Bot 27:436–448

    Article  Google Scholar 

  27. Newell PC (1982) Cell surface binding of adenosine to Dictyostelium and inhibition of pulsatile signaling. FEMS Microbiol Lett 13:417–421

    Article  CAS  Google Scholar 

  28. Dustin M, Colman D (2002) Neural and immunoological synaptic relations. Science 298:785–789

    Article  CAS  PubMed  Google Scholar 

  29. Goldbeter A (1996) Biochemical Oscillations and Cellular Rhythms. University Press, Cambridge

    Google Scholar 

  30. Lahav G (2004) The strength of Indecisiveness: oscillatory behavior for better cell fate determination. Science’s STKE 264:55–57

    Google Scholar 

  31. Nelson DE et al. (2004) Oscillations in NF-kB signaling control the dynamics of gene expression. Science 306:704–708

    Article  CAS  PubMed  Google Scholar 

  32. Tyson J, Csikasz-Nagy A, Novak B (2002) The dynamics of cell cycle regulation. Bioessays 24:1095–1109

    Article  CAS  PubMed  Google Scholar 

  33. Goldbeter A (2002) Computational approaches to cellular rhythms. Nature 420:238–245

    Article  CAS  PubMed  Google Scholar 

  34. Prigogine I (1977) Time, Structure and Fluctuations. Nobel Lecture

    Google Scholar 

  35. Neuman Y (2006) The Polysemy of the Sign: From Quantum Computing to the Garden of Forking Paths. Proceedings of the Gathering in Biosemiotics 6

    Google Scholar 

  36. Edelman G, Gally J (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci USA 98(24):13763–13768

    Article  CAS  PubMed  Google Scholar 

  37. Artmann S (2006) Biological information. To appear in: Sahotra Sarkar, Anya Plutynski (eds) A Companion to the Philosophy of Biology, (in press)

    Google Scholar 

  38. Saussure F (1962) Cours de Linguistique Générale. Payot, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Faria, M. (2008). Signal Transduction Codes and Cell Fate. In: Barbieri, M., Hoffmeyer, J. (eds) The Codes of Life. Biosemiotics, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6340-4_12

Download citation

Publish with us

Policies and ethics