Skip to main content

Lensomics: Advances in Genomics and molecular Techniques for Lentil Breeding and Management

  • Chapter
Book cover Lentil

Abstract

Lentil is a self-pollinating diploid (2n=14 chromosomes) annual cool season grain legume produced as a high protein food source throughout the world. Several lentil genome maps are available and recent progress towards a consensus map has been made by employing robust locus markers that are derived from the model legume Medicago truncatula and other legume genomes. Such markers are co-dominant and will likely be useful across a broad lentil genetic background for marker-assisted trait selection. Candidate trait-associated genes are under investigation, particularly for disease resistance, and these are soon likely to become available for validation against pathogen populations and in differing environments using transgenic approaches. For this, reliable transformation systems have been developed. However, further effort is required to develop a robust and high-throughput full regeneration system for transformant lentil plants. The near future of Lensomics will include further candidate gene characterisation through transcriptome and reverse genetic techniques. These studies will be conducted to uncover genes responsive to biotic and abiotic stimuli as well as those governing desirable seed quality traits, such as size, shape and colour. Furthermore, proteomic and metabolomic approaches will be employed to derive information on the functional mechanisms involved

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Fautrer AG, McNeil V, Hill GD, Burritt DJ (1997) In vitro propagation of Lens species and their F1 interspecific hybrids. Plant Cell Tissue and Organ Culture 47:169–176

    Article  Google Scholar 

  • Bajaj YPS, Dhanju M S (1979) Regeneration of plants from apical meristem tips of some legumes. Current Science 48:906–907

    Google Scholar 

  • Barton J, Smith PMC, Fletcher N, Walker R, Leece E and Chappel S (1998) Methods for transformation and regeneration of other Pulses. In Cooperative Research Centre for Legumes in Mediterranean Agriculture Annual Report 1997–98. p 53

    Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2005) Constitutive expression of the flavone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiological and Molecular Plant Pathology 67:100–107

    Article  CAS  Google Scholar 

  • Chowdhury MA, Andrahennadi CP, Slinkard AE, Vandenberg A (2001) RAPD and SCAR markers for resistance to ascochyta blight in lentil. Euphytica 118:331–337

    Article  CAS  Google Scholar 

  • Chowrira G, Akella V, Lurquin PF (1995) Electroporation-mediated gene transfer into intact nodal meristems in planta: Generating transgenic plants without in vitro tissue culture. Molecular Biotechnology 3:17–23

    CAS  PubMed  Google Scholar 

  • Chowrira G, Akella V, Fuerst PE, Lurquin PF (1996) Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Molecular Biotechnology 5:85–96

    CAS  PubMed  Google Scholar 

  • Christou P (1992) Genetic engineering and in vitro culture of crop legumes. Technomic Publishing, Pennsylvania, USA. pp 307

    Google Scholar 

  • Coram TE, Pang ECK (2005) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnology Journal 4:647

    Google Scholar 

  • DeKathen A, Jacobsen HJ (1990) Agrobacterium tumefacians-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Reports 9:276–279

    CAS  Google Scholar 

  • Dur´n Y, Fratini R, García P, érez de la Vega M (2004) An intersubspecific genetic map of Lens. Theoretical and Applied Genetics 108:1265–1273

    Article  CAS  Google Scholar 

  • Eujayl I., Baum M, Powell W, Erskine W, Pehu E (1998a) A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theoretical and Applied Genetics 97,83–89.

    Google Scholar 

  • Ford R, Pang ECK, Taylor PWJ (1997) Diversity analysis and species identification in Lens using PCR generated markers. Euphytica 96:247–255

    Article  CAS  Google Scholar 

  • Ford R, Pang ECK, Taylor PWJ (1999) Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and identification of closely linked molecular markers. Theoretical and Applied Genetics 98:93–98

    Article  CAS  Google Scholar 

  • Ford R, Le Roux K, Itman C, Brouwer JB, Taylor PWJ (2002) Genome-specific sequence tagged microsatellite site (STMS) markers for diversity analysis and genotyping in Pisum species. Euphytica 124:397–405

    Article  CAS  Google Scholar 

  • Fratini R, Ruiz ML (2002) Comparative study of different cytokinins in the induction of morphogenesis in lentil (Lens culinaris Medik.). In Vitro Cellular and Developmental Biology – Plant 38:46–51

    Article  CAS  Google Scholar 

  • Gulati A, Jaiwal PK (1994) Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Reports 13:523–527

    Article  CAS  Google Scholar 

  • Gulati A., McHughen A. (2000) Regeneration and particle bombardment-mediated genetic transformation of lentil (Lens culinaris Medik).In: Proceedings of 6th International Congress of Plant Molecular Biology, Quebec, Canada, June18th–24th, 2000

    Google Scholar 

  • Gulati A, Schryer P, McHughen A (2001) Regeneration and micrografting of lentil shoots. In Vitro Cellular and Developmental Biology – Plant 37:798–802

    Article  CAS  Google Scholar 

  • Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cellular and Developmental Biology – Plant 38:316–324

    Article  CAS  Google Scholar 

  • Hamwieh A, Udupa SM Choumane W, Sarker A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theoretical and Applied Genetics 110:669–677

    CAS  Google Scholar 

  • Hoque MI., Hassan F, Sarker RH, Kisecker H, Jacobsen H-J (2003) Lentil improvement through biotechnology. In: In Vitro Culture, Transformation and Molecular Markers for Crop Improvement Eds. Islam AS. Science Publishers, Inc. Enfield, USA. pp 175–192

    Google Scholar 

  • Havey M H, Meuhlbauer F J (1989) Linkages between restriction fragment length, isozyme and morphological markers in lentil. Theoretical and Applied Genetics 77: 839–843

    Article  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) Tilling. Traditional mutagenesis meets functional genomics. Plant Physiology 135:630–6

    CAS  Google Scholar 

  • Maccarrone M, Dini L; Di Marzio L, Di Giulio A, Rossi A; Finazzi Agró, A (1992a) Interaction of DNA with cationic liposomes: ability of transfecting lentil protoplasts. Biochemical and Biophysiological Research Communications 186:1417–1422

    Article  CAS  Google Scholar 

  • Maccarrone M, Veldink GA, Vliegenthart JFG (1992b) Inhibition of lipoxygenase activity in lentil protoplasts by monoclonal antibodies introduced into the cells via electroporation. European Journal of Biochemistry 205:995–1001

    Article  CAS  Google Scholar 

  • Maccarrone M, Dini LA, Rossi A, Finazzi Agró, A (1993) Gene transfer to lentil protoplasts by lipofection and electroporation. Journal of Lipid Research 3:707–716

    CAS  Google Scholar 

  • Maccarrone M, Veldink GA, Finazzi Agró A, Vilegenthart JFG (1995a) Lentil root protoplasts: a transient expression system suitable for coelectroporation of monoclonal antibodies and plasmid molecules. Biochemical and biophysiological Acta 1243:136–142

    Google Scholar 

  • Maccarrone M, Hilbers MP, Veldink GA, Vliegenthart JFG, Finazzi-Agró, A. (1995b) Inhibition of lipoxygenase in lentil protoplasts by expression of antisense RNA. Biochemical and biophysiological Acta 1259:1–3

    Google Scholar 

  • Mahmoudian M, Yücel M, H A Öktem (2002) Transformation of lentil (Lens culinaris M.) cotyledonary nodes by vacuum infiltration of Agrobacterium tumefaciens Plant Molecular Biology Reporter 20:251–257

    Article  Google Scholar 

  • Malik KA, Saxena PK (1992) Thidiazuron induces high frequency shoot regeneration in intact seedlings of pea (Pisum sativum), chickpea (Cicer arietinum) and lentil (Lens culinaris). Australian Journal of Plant Physiology 19:731–740

    Article  CAS  Google Scholar 

  • Materne M A (2003) Importance of phenology and other key factors in improving the adaptation of lentil (Lens culinaris Medikus) in Australia. PhD thesis, The University of Western Australia

    Google Scholar 

  • McClean P, Grafton KF(1989) Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis. Plant Science 60:117–122

    Article  Google Scholar 

  • Mohamed MF, Read PE, Coyne DP (1992) Plant regeneration from in vitro culture of embryonic axis explants in common and tepary beans. Journal of the American Society of Horticultural Science 117:332–336

    Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A, McPhee KE, Coyne CJ, Rajesh PN, Ford R (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165

    Article  Google Scholar 

  • Mustafa B M, Coram T E, Pang ECK, Taylor PWJ, Ford R (2006) Unraveling Ascochyta lentis resistance in lentil. Ascochyta 2006 conference. 2nd–5th July, France. http://www.grainlegumes.com/ default.asp?id_biblio=350

    Google Scholar 

  • Newell C, Growns A, McComb DJ (2006) Aeration is more important than shoot orientation when rooting lentil (Lens culinaris Medik.) Cv. ‘Digger’ microcuttings in vitro. In Vitro Cellular and Developmental Biology – Plant 42:197–200

    Article  Google Scholar 

  • Nguyen T, Brouwer JB, Taylor PWJ, Ford R (2001) A novel source of resistance in lentil (Lens culinaris ssp. culinaris) to ascochyta blight caused by Ascochyta lentis. Australasian Plant Pathology 30:211–215

    Google Scholar 

  • Öktem HA, Mahmoudian M, Eyidooan F, Yücel M (1999) GUS gene delivery and expression in lentil cotyledonary nodes using particle bombardment. Lens Newsletter 26:3–6

    Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiology 131:866–871

    Article  CAS  PubMed  Google Scholar 

  • Phan HTT, Elwood SR, Hane JK, Ford R, Materne M, Oliver RP (2006a) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theoretical and Applied Genetics. DOI 10.1007/s001222-006-0455-3

    Google Scholar 

  • Phan HTT, Ellwood SR, Ford R, Thomas S, Oliver R (2006b) Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. Functional Plant Biology 33:775–782

    Article  CAS  Google Scholar 

  • Polanco MC, Pelaez MI, Ruiz ML (1988) Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tissue and Organ Culture 15:175–182

    Article  Google Scholar 

  • Polanco MC, Ruiz ML (1997) Effect of benzylaminopurine on in vitro and in vivo root development in lentil (Lens culinaris Medik.). Plant Cell Reports 17:22–26

    Article  Google Scholar 

  • Polanco MC, Ruiz ML (2001) Factors that affect plant regeneration from in vitro culture of immature seeds in four lentil (Lens culinaris Medik.) cultivars. Plant Cell Tissue and Organ Culture 66:133–139

    Article  CAS  Google Scholar 

  • Polisetty R, Paul V, Deveshwar JJ, Khetarpal S, Suresh K, Chandra R (1997) Multiple shoot induction by benzyladenine and complete plant regeneration from seed explants of chickpea (Cicer arietinum L.). Plant Cell Reports 16:565–571

    CAS  Google Scholar 

  • Puonti-Kaerlas J, Eriksson T, Engstrom P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theoretical and Applied Genetics 84:443–450

    Google Scholar 

  • Rongwen J, Akkaya MS, Bhagwat AA, Lavi U, Cregan PB (1995) The use of microsatellite DNA markers for soybean genotype identification. Theoretical and Applied Genetics 90:43–48

    Article  CAS  Google Scholar 

  • Rubeena, Taylor PWJ, Ades PK, Ford R (2006) QTL mapping of ascochyta blight (Ascochyta lentis) resistance in lentil (Lens culinaris). Plant Breeding 125:506–512

    Article  CAS  Google Scholar 

  • Rubeena., Taylor PWJ, Ford R (2003) Molecular mapping the lentil (Lens culinaris ssp. culinaris) genome. Theoretical and Applied Genetics 107:910–916

    Article  CAS  Google Scholar 

  • Russell DR; Wallace K, Bathe J, Martinell B, McCabe D (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Reports 12:165–169

    Article  CAS  Google Scholar 

  • Sanago MHM, Shattuck VI, Strommer J (1996) Rapid plant regeneration of pea using thidiazuron. Plant Cell Tissue and Organ Culture 45:165–168

    Article  CAS  Google Scholar 

  • Sarker RH, Biswas A, Mustafa BM, Mahbub S, Hoque MI (2003) Agrobacterium-mediated transformation of lentil (Lens culinaris Medik.) Plant Tissue Culture 13:1–12

    Google Scholar 

  • Sarker RH, Mustafa BM, Biswas A, Mahbub S, Nahar M, Hashem R, Hoque MI (2003) In vitro regeneration in lentil (Lens culinaris Medik.) Plant Tissue Culture 13:155–163

    Google Scholar 

  • Saxena PK, King J (1987) Morphogenesis in lentil plant regeneration from callus Science 52:223–227

    CAS  Google Scholar 

  • Singh RK, Raghuvanshi SS (1989) Plantlet regeneration from nodal segment and shoot tip derived explants of lentil. Lens Newsletter 16:33–35

    Google Scholar 

  • Subhadra, Vahishat RK, Chowdhury JB, Singh M, Sareen PK (1998) Multiple shoots from cotyledonary node explants of non-nodulating genotype (ICC435M) of chickpea, Cicer arietinum L. Indian Journal of Experimental Biology 36:1276–1279

    Google Scholar 

  • Tadmor Y, Zamir D, Ladizinsky G (1987) Genetic mapping of an ancient translocation in the genus Lens. Theoretical and Applied Genetics 73:883–892

    Article  Google Scholar 

  • Tahir M, Muehlbauer FJ (1994) Gene mapping in lentil with recombinant inbred lines. Journal of Heredity 85:306–310

    CAS  Google Scholar 

  • Tahir M, Simon CJ, Muehlbauer FJ (1993) Gene map of lentil: A review. Lens Newsletter 20:3–10

    Google Scholar 

  • Tar’an B, Buchwaldt L, Tullu A, Banniza S, Warkentin TD, Vandenberg A (2003) Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik). Euphytica 134:223–230

    Article  CAS  Google Scholar 

  • Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JDG (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: A tool for functional genomics. The Plant Cell 11:1841–1852

    Article  CAS  PubMed  Google Scholar 

  • Trick NU, Dinkins RD, Santarem ER, Samoylo RDV, Meurer CA, Walker DR, Parrot WA, Finer JJ, Collins GB (1997) Recent advances in soybean transformation. Plant Tissue Culture and Biotechnology 3: 9–26

    Google Scholar 

  • Tullu A, Buchwaldt T, Warkentin T, Taran B, Vandenberg A (2003) Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI320937 germplasm of lentil (Lens culinaris Medik). Theoretical and Applied Genetics 106:428–434

    CAS  PubMed  Google Scholar 

  • Vaillancourt RE, Slinkard AE (1993) Linkage of morphological and isozyme loci in lentil, Lens culinaris L. Canadian Journal of Plant Science 73:917–926

    CAS  Google Scholar 

  • VandenBosch KA, Stacey G (2003) Summaries of legume genomics projects from around the globe. Community resources for crops and models Plant Physiology 131:840–865

    Google Scholar 

  • Voinnet O (2002) RNA silencing: Small RNAs as ubiquitous regulators of gene expression. Current Opinion in Plant Biology 5:444

    Article  CAS  PubMed  Google Scholar 

  • Warkentin TD, McHughen A (1992) Agrobacterium tumefaciens-mediated beta-glucuronidase (GUS) gene expression in lentil (Lens culinaris Medik.) tissues. Plant Cell Reports 11:274–278

    Article  CAS  Google Scholar 

  • Warkentin TD, McHughen A (1993) Regeneration from lentil cotyledonary nodes and potential of this explant for transformation by Agrobacterium tumefaciens. Lens Newsletter 20:26–28

    Google Scholar 

  • Weeden NF, Muehlbauer FJ, Ladizinsky G (1992) Extensive conservation of linkage relationship between pea and lentil genetic maps. Journal of Heredity 83:123–129

    Google Scholar 

  • Williams DJ, McHughen A (1986) Plant regeneration of the legume Lens culinaris Medik (lentil) in vitro. Plant Cell Tissue and Organ Culture 7:149

    Article  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Huettel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Molecular and General Genetics 262:90–101

    Article  CAS  PubMed  Google Scholar 

  • Zamir D, Ladizinsky G (1984) Genetics of allozyme variants and linkage groups in lentil. Euphytica 33:329–336

    Article  CAS  Google Scholar 

  • Závodná M, Kraic J, Paglia G, Gregova E, Morgante M (2000) Differentiation between closely related lentil (Lens culinaris Medik.) cultivars using DNA markers. Seed Science and Technology 28:217–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ford, R., Mustafa, B., Inder, P., Shaikh, R., Materne, M., Taylor, P. (2007). Lensomics: Advances in Genomics and molecular Techniques for Lentil Breeding and Management. In: Yadav, S.S., McNeil, D.L., Stevenson, P.C. (eds) Lentil. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6313-8_17

Download citation

Publish with us

Policies and ethics