Skip to main content

Comparative Genomics of Cereals

  • Chapter
Book cover Genomics-Assisted Crop Improvement

Abstract

Cereals such as wheat, barley, maize, sorghum, millet and rice belong to the grass family and comprise some of the most important crops for human and animal nutrition. Comparative genomic studies in cereals have been pioneering the field of plant comparative genomics in the past decade. The first comparative studies were performed at the genetic map level. They have revealed a very good conservation of the order (colinearity) of molecular markers and of QTL for agronomic traits along the chromosomes thereby establishing evolutionary relationships between the cereal genomes. For this reason and because of its small size, rice was promoted as a model and was chosen to be the first cereal genome sequenced. Further, the development of large EST collections and the first inter- and intra-specific comparative studies of BAC sequences from maize, sorghum, rice, wheat and barley have increased the resolution of comparative analyses and have shown that a number of rearrangements disrupting microcolinearity have occurred during the evolution of the cereal genomes in the past 50–70 million years.

This chapter reviews comparative studies that have been performed at the macro- and micro- levels in cereals and discusses what was learned about the mechanisms underlying genome evolution in these important crop species. It describes how this knowledge can be applied to support gene discovery and cereal crop improvement and presents the opportunities that will be available within the next few years as the sequencing of several cereal genomes in addition to rice will be completed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn S, Aznksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–4

    PubMed  CAS  Google Scholar 

  • Akhunov ED, Akhunova AR, Dvorak J (2005) BAC libraries of Triticum urartu, Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid wheat. Theor Appl Genet 111:1617–22

    PubMed  CAS  Google Scholar 

  • Allouis S, Moore G, Bellec A, Sharp R, Faivre Rampant P, Mortimer K, Pateyron S, Foote TN, Griffiths S, Caboche M, Chalhoub B (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res Comm 31:331–338

    CAS  Google Scholar 

  • Ammiraju JSS, Luo M, Goicoechea JL, Wang W et al (2006) The Oryza bacterial artificial chromosome library resource: construction andanalysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147

    PubMed  Google Scholar 

  • Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau JY, Telismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–64

    PubMed  CAS  Google Scholar 

  • Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284

    CAS  Google Scholar 

  • Bedell J, Budiman MA, Nunberg A, Citek RW et al (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3:103–115

    Google Scholar 

  • Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D (2004) Ultraconserved elements in the human genome. Science 304:1321–1325

    PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ramakrishna W (2002) Numerous small rearrangements of gene content, order and orientation differentiate grass genomes. Plant Mol Biol 48:821–827

    PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. Curr Opin Plant Biol 6:128–33

    PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–32

    PubMed  CAS  Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet – a new marker system for comparative genetics. Theor Appl Genet 110:1467–72

    PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–78

    PubMed  CAS  Google Scholar 

  • Bortiri E, Jackson D, Hake S (2006) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9:164–71

    PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong JK, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    PubMed  CAS  Google Scholar 

  • Bowers JE, Arias MA, Asher R, Avise JA et al (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211

    PubMed  CAS  Google Scholar 

  • Brazma A, Vilo J (2001) Gene expression data analysis. Microbes Infect 3:823–9

    PubMed  CAS  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease – resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    PubMed  CAS  Google Scholar 

  • Brunner S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low copy DNA interrupts the microcolinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

    PubMed  CAS  Google Scholar 

  • Brunner S, Fengler K, Morgante M, Tingey S, Rafalski A (2005) Evolution of DNA sequence nonhomologies among maize inbreds. Plant Cell 17:343–360

    PubMed  CAS  Google Scholar 

  • Buell CR, Yuan Q, Ouyang S, Liu J et al (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res 15:1284–91

    PubMed  CAS  Google Scholar 

  • Calabrese PP, Chakravarty S, Vision TJ (2003) Fast identification and statistical evaluation of segmental homologies in comparative maps. Bioinformatics 19:i74–80

    PubMed  Google Scholar 

  • Caldwell KS, Langridge P, Powell W (2004) Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol 136:3177–3190

    PubMed  CAS  Google Scholar 

  • Cenci A, Chantret N, Xy K, Gu Y, Anderson OD, Fahima T, DistelfeldA, Dubcovsky J (2003) A half million clones bacterial artificial chromosome (BAC) library of durum wheat. Theor Appl Genet 107:931–939

    PubMed  CAS  Google Scholar 

  • Chalhoub B, Belcram H, Caboche M (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotech J 2:181–188

    Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S et al (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045

    PubMed  CAS  Google Scholar 

  • Chen M, SanMiguel P, de Oliveira AC, Woo SS, Zhang H, Wing RA, Bennetzen JL (1997) Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci USA 94:3431–3435

    PubMed  CAS  Google Scholar 

  • Chen M, SanMiguel P, Bennetzen JL (1998) Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics 148:435–443

    PubMed  CAS  Google Scholar 

  • Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2005) Comparative analyses of genomic locations and race specificities of loci forquantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100:2544–2549

    Google Scholar 

  • Coe E, Cone K, McMullen M, Chen SS et al (2002) Access to the maize genome: an integrated physical and genetic map. Plant Physiol 128:9–12

    PubMed  CAS  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Google Scholar 

  • Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15

    PubMed  CAS  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    PubMed  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    PubMed  CAS  Google Scholar 

  • Draper J, Mur LJ, Jenkins G, Ghosh-Biswas C, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    PubMed  CAS  Google Scholar 

  • Dunford RP, Yano M, Kurata N, Sasaki T, Huestis G, Rocheford T, Laurie DA (2002) Comparative mapping of the barley Ppd-H1 photoperiod response gene region, Which lies close to a junction between two rice linkage segments. Genetics 161:825–834

    PubMed  CAS  Google Scholar 

  • Falque M, Decousset L, Dervins D, Jacob AM, Joets J, Martinant JP, Raffoux X, Ribiere N, Ridel C, Samson D, Charcosset A, Murigneux A (2005) Linkage mapping of 1454 new maize candidate gene loci. Genetics 170:1957–66

    PubMed  CAS  Google Scholar 

  • Fang Z, Polacco M, Chen S, Schroeder S, Hancock D, Sanchwez H, Coe E (2003) cMap: the comparative genetic map viewer. Bioinformatics 19:416–7

    Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies Indica and Japonica genome alignments. Genome Res 14:1812–1819

    PubMed  CAS  Google Scholar 

  • Feng Q, Zhang Y, Hao P, Wang S et al (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320

    PubMed  CAS  Google Scholar 

  • Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8265–8270

    PubMed  CAS  Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bota 89:3–10

    CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    PubMed  CAS  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578

    PubMed  CAS  Google Scholar 

  • Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pe ME Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635

    PubMed  CAS  Google Scholar 

  • Gaut BS (2001) Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 11:55–66

    PubMed  CAS  Google Scholar 

  • Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28

    CAS  Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster A-M, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168:1087–1096

    PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    PubMed  CAS  Google Scholar 

  • Gottwald S, Stein N, Borner A, Sasaki T, Graner A (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is locatedon chromosome 2HS in a region that shows high colinearity with rice chromosome 7L. Mol Genet Genomics 271:426–436

    PubMed  CAS  Google Scholar 

  • Green ED (2001) Strategies for the systematic sequencing of complex genomes. Nat Rev Genet 2:573–583

    PubMed  CAS  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    PubMed  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    PubMed  CAS  Google Scholar 

  • Gu YQ, Coleman-Derr D, Kong X, Anderson OD (2004) Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four triticeae genomes. Plant Physiol 135:459–470

    PubMed  CAS  Google Scholar 

  • Gulick PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    PubMed  CAS  Google Scholar 

  • Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4:47–58

    PubMed  CAS  Google Scholar 

  • Hampson S, McLysaght A, Gaut B, Baldi P (2003) LineUp: statistical detection of chromosomal homology with application to plant comparative genomics. Genome Res 13:1–12

    Google Scholar 

  • Harlan JR (1992) Origins and processes of domestication. In Chapman GP (ed) Grass evolution and domestication, Cambridge University Press, Cambridge, pp 159–175

    Google Scholar 

  • Hasterok R, Marasek A, Donnison IS, Armstead I, Thomas A, King IP, Wolny E, Idziak D, Draper J, Jenkins G (2006) Alignment of the genomes of brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173:349–62

    PubMed  CAS  Google Scholar 

  • Huang SX, Sirikhachornkit A, Faris JD, Su XJ, Gill BS, Haselkorn R, Gornicki P (2002) Phylogenetic analysis of the acetyl-CoAcarboxylase and 3-phosphoglycerate kinase loci in wheat and othergrasses. Plant Mol Biol 48:805–820

    PubMed  CAS  Google Scholar 

  • Ilic K, SanMiguel PJ, Bennetzen JL (2003) A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 100:12265–12270

    PubMed  CAS  Google Scholar 

  • Inada DC, Bashir A, Lee C, Thomas BC, Ko C, Goff SA,Freeling M(2003) Conserved noncoding sequences in the grasses. Genome Res 13:2030–2041

    PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Isidore E, Scherrer B, Chaloub B, Feuillet C, Keller B (2005)Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res 15:526–536

    PubMed  CAS  Google Scholar 

  • Jaiswal P, Ni J, Yap I, Ware D et al (2006) Gramene: a bird’s eyeview of cereal genomes. Nucleic Acids Res 34:D717–23

    PubMed  CAS  Google Scholar 

  • Janda J, Bartos J, Safar J, Kubalakova M et al (2004) Constructionof a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345

    Google Scholar 

  • Janda J, Šafář J,.Kubaláková M, Bartos J et al (2006) Advanced resources for plant genomics: BAC library specific for the short arm of chromosome 1B. Plant J, 47:977–986

    Google Scholar 

  • Kaplinsky NJ, Braun DM, Penterman J, Gof SA, Freeling M (2002)Utility and distribution of conserved noncoding sequences in the grasses. Proc Natl Acad Sci 99:6147–6151

    PubMed  CAS  Google Scholar 

  • Katagiri S, Wu J, Ito Y, Karasawa W, Shibata M, Kanamori H, Katayose Y, Namiki N, Matsumoto T, Sasaki T (2004) End sequencing and chromosomal in silico mapping of BAC clone derived from an indica rice cultivar, Kasalath. Breed Sci 54:273–279

    Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Phys125:1198–1205

    CAS  Google Scholar 

  • Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towardsmap-based cloning of the barley stem rust resistance genes rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195

    PubMed  CAS  Google Scholar 

  • Kishimoto N, Higo H, Abe K, Arai S, Saito A, Higo K (1994)Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet 88:722–726

    CAS  Google Scholar 

  • Klein PE, Klein RR, Vrebalov J, Mullet JE (2003) Sequence-basedalignment of sorghum chromosome 3 and rice chromosome 1 reveals extensive conservation of gene order and one major chromosomal rearrangement. Plant J 34:605–621

    PubMed  CAS  Google Scholar 

  • Kubalakova M, Vrana J, Cihalikova J, Simkova H, Dolezel J (2002)Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:1362–1372

    PubMed  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by helitrontransposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    PubMed  CAS  Google Scholar 

  • Langham RJ, Walsh J, Dunn M, Ko C, Goff SA et al (2004) Genomicduplication, fractionalization and the origin of regulatory novelty. Genetics 166:935–945

    PubMed  CAS  Google Scholar 

  • La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis ofmapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    PubMed  Google Scholar 

  • Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS (2005) Theefficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48:1120–1126

    PubMed  CAS  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A,Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    PubMed  CAS  Google Scholar 

  • Li W, Gill BS (2002) The colinearity of the Sh2/A1 orthologous region in rice sorghum and maize is interrupted and accompanied by genome expansion in the Triticeae. Genetics 160:1153–1162

    PubMed  CAS  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequencecomposition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511

    PubMed  CAS  Google Scholar 

  • Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    PubMed  CAS  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLsaffecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Lockton S, Gaut BS (2005) Plant conserved non-coding sequences andparalogue evolution. Trends Genet. 21:60–65

    PubMed  CAS  Google Scholar 

  • McClintock B (1930) A cytological demonstration of the location of an interchange between two non-homologous chromosomes of Zea mays. Proc Natl Acad Sci USA 16:791–796

    PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of ricenuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    PubMed  CAS  Google Scholar 

  • Ma J, SanMiguel P, Lai J, Messing J, Bennetzen JL (2005) DNArearrangement in orthologous orp regions of the maize, rice and sorghum genomes. Genetics 170:1209–1220

    PubMed  CAS  Google Scholar 

  • Margulies EH, Vinson JP, Miller W, Jaffe DB, Lindblad-Toh K, Chang JL, Green ED, Lander ES, Mullikin JC, Clamp M (2005) An initial strategy for the systematic identification of functional elements in the human genome by low-redundancy comparative sequencing. Proc Natl Acad Sci USA 102:4795–4800

    PubMed  CAS  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice ‘green revolution gene’ encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    PubMed  CAS  Google Scholar 

  • Monna L, Ohta R, Masuda H, Koike A, Minobe Y (2006) Genome-widesearching of single-nucleotide polymorphisms among eight distantlyand closely related rice cultivars (Oryza sativa L.) and a wild accession (Oryza rufipogon Griff.). DNA Res 13:43–51

    PubMed  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution:grasses, line up and form a circle. Curr Biol 5:737–739

    PubMed  CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A(2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    PubMed  CAS  Google Scholar 

  • Moullet O, Zhang HB, Lagudah ES (1999) Construction and characterisation of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313

    Google Scholar 

  • Nagamura Y, Inoue T, Antonio B, Shimano T et al (1995) Conservationof duplicated segments between rice chromosomes 11 and 12. Breed Sci 45:373–376

    CAS  Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction andcharacterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    PubMed  CAS  Google Scholar 

  • Paterson AH, Lin YR, Li ZK, Schertz KF, Doebley JF, Pinson SRM, LiuSC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269: 1714–1718.

    Google Scholar 

  • Paterson AH, Bowers JE, Peterson DG., Estill JC, and Chapman BA (2003) Structure and evolution of cereal genomes. Curr Opin Genet Devel 13:644–650

    CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidizationpredating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    PubMed  CAS  Google Scholar 

  • Paterson AH (2006) Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nat Rev Genet 7:174–184

    Google Scholar 

  • Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C (2006). Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474

    PubMed  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP et al (1999) ‘Greenrevolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    PubMed  CAS  Google Scholar 

  • Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98:2101–2103

    PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR et al (2004) A chromosome binmap of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, Lakey N,O’Shaughnessy AL, Nascimento LU, McCombie WR, Martienssen RA (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–40

    PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Bennetzen JL (2006) The maize genome as a model forefficient sequence analysis of large plant genomes. Curr Opin Plant Biol 9:149–156

    PubMed  CAS  Google Scholar 

  • Ramakrishna W, Dubcovsky Y, Park YJ, Busso CS, Emberton J, SanMiguel P, Bennetzen JL (2002a) Different types and rates of genome evolution detected by comparative sequence analysis of orthologous segments from four cereal genomes. Genetics 162:1389–1400

    CAS  Google Scholar 

  • Ramakrishna W, Emberton J, Ogden M, SanMiguel P, Bennetzen JL (2002b) Structural analysis of the maize Rp1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell 14:3213–3223

    CAS  Google Scholar 

  • Safar J, Bartos J, Janda J, Bellec A et al (2004) Dissecting largeand complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    PubMed  CAS  Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2002) Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucleic Acids Res 30:2316–2328

    Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2004) New in silico insightinto the synteny between rice (Oryza sativa L.) and maize (Zea maysL.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409

    Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K, Sakata K et al (2002) The genomesequence and structure of rice chromosome 1. Nature 420:312–316

    PubMed  CAS  Google Scholar 

  • Shen B, Wang DM, McIntyre CL, Liu CJ (2005) A ‘Chinese Spring’ wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. Theor Appl Genet 111:1489–1494

    PubMed  CAS  Google Scholar 

  • Scherrer B, Isidore E, Klein P, Kim JS, Bellec A, Chalhoub B, Keller B, Feuillet C (2005) Large intraspecific haplotype variability at the Rph7 locus results from rapid and recent divergence in the barley genome. Plant Cell 17:361–374

    PubMed  CAS  Google Scholar 

  • Service RF (2006) Gene sequencing. The race for the 1000 genome.Science 311:1544–1546

    Google Scholar 

  • Shen YJ, Jiang H, Jin JP, Zhang ZB et al (2004) Development ofgenome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    PubMed  CAS  Google Scholar 

  • Singh NK, Raghuvanshi S, Srivastava SK, Gaur A et al (2004) Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Funct Integr Genomics 4:102–117

    PubMed  CAS  Google Scholar 

  • Song R, Llaca V, Linton E, Messing J (2001) Sequence, regulation,and evolution of the maize 22-kD zein gene family. Genome Res 11:1817–1825

    PubMed  CAS  Google Scholar 

  • Song R, Llaca V, Messing J (2002) Mosaic organization of orthologoussequences in grass genomes. Genome Res 12:1549–1555

    Google Scholar 

  • Song R and Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci 100:9055–9060

    PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Sorrells M (2004) Cereal genomics research in the post-genomic era. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, pp 559–584

    Google Scholar 

  • Springer NM, Xu X, Barbazuk WB (2004) Utility of different geneenrichment approaches toward identifying and sequencing the maize gene space. Plant Physiol 136:3023–3033

    PubMed  CAS  Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97:13436–13441

    PubMed  CAS  Google Scholar 

  • Swigonova Z, Bennetzen JL, Messing J (2005) Structure and evolutionof the r/b chromosomal regions in rice maize and sorghum. Genetics 169:891–906

    PubMed  CAS  Google Scholar 

  • Tarchini R, Biddle P, Wineland R, Tingey S, Rafalski A (2000) Thecomplete sequence of 340 kb of DNA around the rice adh1-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–391

    PubMed  CAS  Google Scholar 

  • The Rice Chromosome 10 Sequencing Consortium (2003) In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569

    Google Scholar 

  • The Rice Chromosome 3 Sequencing Consortium (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res 15:1284–1291

    Google Scholar 

  • The Rice Full-Length cDNA Consortium (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Google Scholar 

  • Tikhonov A, SanMiguel P, Nakajima Y, Gorenstein N, Bennetzen J et al (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414

    PubMed  CAS  Google Scholar 

  • Ting YC (1966) Duplications and meiotic behavior of the chromosomes in haploid maize (Zea mays L.). Cytologia 31:324–329

    Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) Thepseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    PubMed  CAS  Google Scholar 

  • Vandepoele K, Saeys Y, Simillion C, Raes J, Van de Peer Y (2002) The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice. Genome Res 12:1792–1801

    PubMed  CAS  Google Scholar 

  • Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202

    PubMed  CAS  Google Scholar 

  • Vogel JP, Gu YQ, Twigg P, Lazo GR, Laudencia-Chingcuanco D, Hayden DM, Donze TJ, Vivian LA, Stamova B, Coleman-Derr D (2006) EST sequencing and phylogenetic analysis of the model grass Brachypodium distachyon. Theor Appl Genet DOI:10.1007/s00122-006-0285-3

    Google Scholar 

  • Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R (2005) Architecture of floral branch systems in maize and related grasses. Nature 436:1119–1126

    PubMed  CAS  Google Scholar 

  • Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J 7:525–533

    PubMed  CAS  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP et al (2003) Enrichmentof gene-coding sequences in maize by genome filtration. Science 302:2118–2120

    PubMed  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcowski J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    PubMed  CAS  Google Scholar 

  • Woo SS, Jiang JM, Gill BS, Paterson AH, Wing RA (1994) Constructionand characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 23:4922–4931

    Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysisat different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    PubMed  CAS  Google Scholar 

  • Yan L, Loukoiannov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    PubMed  CAS  Google Scholar 

  • Yan L, Loukoiannov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    PubMed  CAS  Google Scholar 

  • Yang D, Parco A, Nandi S, Subudhi P, Zhu Y, Wang G, Huang N (1997) Construction of a bacterial artificial chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4-specific RFLP markers in rice. Theor Appl Genet 95:1147–1154

    CAS  Google Scholar 

  • Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe Jr. EH (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696

    PubMed  CAS  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgareL.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101: 1093–1099

    CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS et al (2002) A draft sequence of therice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    PubMed  CAS  Google Scholar 

  • Yu Y, Wing RA (2004) Whole genome sequencing: methodology and progress in cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, Dordrecht, pp 385–423

    Google Scholar 

  • Yu J, Wang J, Lin W, Li S et al (2005) The genomes of Oryza sativa:a history of duplications. PLoS Biol 3:266–281

    Google Scholar 

  • Yuan YN, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34:249–255

    PubMed  CAS  Google Scholar 

  • Zhang HB, Choi S, Woo SS, Li Z, Wing RA (1996) Construction andcharacterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol Breed 2:11–24

    CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world. 3rd edn, Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Salse, J., Feuillet, C. (2007). Comparative Genomics of Cereals. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6295-7_8

Download citation

Publish with us

Policies and ethics