Skip to main content

Guanylate Cyclase-Activating Proteins and Retina Disease

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 45))

Abstract

Detailed biochemical, structural and physiological studies of the role of Ca 2+ -binding proteins in mammalian retinal neurons have yielded new insights into the function of these proteins in normal and pathological states. In phototransduction, a biochemical process that is responsible for the conversion of light into an electrical impulse, guanylate cyclases (GCs) are regulated by GC-activating proteins (GCAPs). These regulatory proteins respond to changes in cytoplasmic Ca 2+ concentrations. Disruption of Ca 2+ homeostasis in photoreceptor cells by genetic and environmental factors can result ultimately in degeneration of these cells. Pathogenic mutations in GC1 and GCAP1 cause autosomal recessive Leber congenital amaurosis and autosomal dominant cone dystrophy, respectively. This report provides a recent account of the advances, challenges, and possible future prospects of studying this important step in visual transduction that transcends to other neuronal Ca 2+ homeostasis processes

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acland, G.M., Aguirre, G.D., Ray, J., Zhang, Q., Aleman, T.S., Cideciyan, A.V., Pearce-Kelling, S.E., Anand, V., Zeng, Y., Maguire, A.M., Jacobson, S.G., Hauswirth, W.W., and Bennett, J. (2001). Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28: 92–95.

    Article  PubMed  CAS  Google Scholar 

  • Ames, J.B., Dizhoor, A.M., Ikura, M., Palczewski, K., and Stryer, L. (1999). Three-dimensional structure of guanylyl cyclase activating protein-2 a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J. Biol. Chem. 274: 19329–19337.

    Article  PubMed  CAS  Google Scholar 

  • Batten, M.L., Imanishi, Y., Tu, D.C., Doan, T., Zhu, L., Pang, J., Glushakova, L., Moise, A.R., Baehr, W., Gelder, R.N., Hauswirth, W.W., Rieke, F., and Palczewski, K. (2005). Pharmacological and rAAV Gene Therapy Rescue of Visual Functions in a Blind Mouse Model of Leber Congenital Amaurosis. PLoS. Med. 2: e333.

    Article  PubMed  CAS  Google Scholar 

  • Baylor, D.A. and Burns, M.E. (1998). Control of rhodopsin activity in vision. Eye 12 (Pt 3b): 521–525.

    PubMed  Google Scholar 

  • Bennett, J., Maguire, A.M., Cideciyan, A.V., Schnell, M., Glover, E., Anand, V., Aleman, T.S., Chirmule, N., Gupta, A.R., Huang, Y., Gao, G.P., Nyberg, W.C., Tazelaar, J., Hughes, J., Wilson, J.M., and Jacobson, S.G. (1999). Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc. Natl. Acad. Sci. U. S. A 96: 9920–9925.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J., Zeng, Y., Bajwa, R., Klatt, L., Li, Y., and Maguire, A.M. (1998). Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene Ther. 5: 1156–1164.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, S., Bunick, C.G., and Chazin, W.J. (2004). Target selectivity in EF-hand calcium binding proteins. Biochim. Biophys. Acta 1742: 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Booij, J.C., Florijn, R.J., ten Brink, J.B., Loves, W., Meire, F., van Schooneveld, M.J., de Jong, P.T., and Bergen, A.A. (2005). Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. J. Med. Genet. 42: e67.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, Y., Dannenberg, J., Pollmann, V., Marchot, P., and Pongs, O. (2001). Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1). J. Biol. Chem. 276: 11949–11955.

    Article  PubMed  CAS  Google Scholar 

  • Burns, M.E. and Arshavsky, V.Y. (2005). Beyond counting photons: trials and trends in vertebrate visual transduction. Neuron 48: 387–401.

    Article  PubMed  CAS  Google Scholar 

  • Burns, M.E. and Baylor, D.A. (2001). Activation deactivation and adaptation in vertebrate photoreceptor cells. Annu. Rev. Neurosci. 24: 779–805.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, J.E., Zhang, Y., Brown, G.A., and Semple-Rowland, S.L. (2004). Cone cell survival and downregulation of GCAP1 protein in the retinas of GC1 knockout mice. Invest Ophthalmol. Vis. Sci 45: 3397–3403.

    Article  PubMed  Google Scholar 

  • Cuenca, N., Lopez, S., Howes, K., and Kolb, H. (1998). The localization of guanylyl cyclase-activating proteins in the mammalian retina. Invest Ophthalmol. Vis. Sci. 39: 1243–1250.

    PubMed  CAS  Google Scholar 

  • Dizhoor, A.M. (2000). Regulation of cGMP synthesis in photoreceptors: role in signal transduction and congenital diseases of the retina. Cell Signal. 12: 711–719.

    Article  PubMed  CAS  Google Scholar 

  • Dizhoor, A.M., Boikov, S.G., and Olshevskaya, E. (1998). Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. J. Biol. Chem. 273: 17311–17314.

    Article  PubMed  CAS  Google Scholar 

  • Downes, S.M., Holder, G.E., Fitzke, F.W., Payne, A.M., Warren, M.J., Bhattacharya, S.S., and Bird, A.C. (2001a). Autosomal dominant cone and cone-rod dystrophy with mutations in the guanylate cyclase activator 1A gene-encoding guanylate cyclase activating protein-1. Arch. Ophthalmol. 119: 96–105.

    CAS  Google Scholar 

  • Downes, S.M., Payne, A.M., Kelsell, R.E., Fitzke, F.W., Holder, G.E., Hunt, D.M., Moore, A.T., and Bird, A.C. (2001b). Autosomal dominant cone-rod dystrophy with mutations in the guanylate cyclase 2D gene encoding retinal guanylate cyclase-1. Arch. Ophthalmol. 119: 1667–1673.

    CAS  Google Scholar 

  • Duda, T., Goraczniak, R.M., and Sharma, R.K. (1993). The glycine residue of ATP regulatory module in receptor guanylate cyclases that is essential in natriuretic factor signaling. FEBS Lett. 335: 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Duda, T., Goraczniak, R.M., Surgucheva, I., Rudnicka-Nawrot, M., Gorczyca, W.A., Palczewski, K., Sitaramayya, A., Baehr, W., and Sharma, R.K. (1996). Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35: 8478–8482.

    Article  PubMed  CAS  Google Scholar 

  • Duda, T. and Koch, K.W. (2002). Calcium-modulated membrane guanylate cyclase in synaptic transmission? Mol. Cell Biochem. 230: 107–116.

    Article  PubMed  CAS  Google Scholar 

  • El-Shanti, H., Al-Salem, M., El-Najjar, M., Ajlouni, K., Beck, J., Sheffiled, V.C., and Stone, E.M. (1999). A nonsense mutation in the retinal specific guanylate cyclase gene is the cause of Leber congenital amaurosis in a large inbred kindred from Jordan. J. Med. Genet. 36: 862–865.

    PubMed  CAS  Google Scholar 

  • Falke, J.J., Drake, S.K., Hazard, A.L., and Peerson, O.B. (1994). Molecular tuning of ion binding to calcium signaling proteins. Q. Rev. Biophys. 27: 219–290.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, K.M., Zozulya, S., Stryer, L., and McKay, D.B. (1993). Three-dimensional structure of recoverin a calcium sensor in vision. Cell 75: 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Fleischman, D., Denisevich, M., Raveed, D., and Pannbacker, R.G. (1980). Association of guanylate cyclase with the axoneme of retinal rods. Biochim. Biophys. Acta 630: 176–186.

    PubMed  CAS  Google Scholar 

  • Gorczyca, W.A., Van Hooser, J.P., and Palczewski, K. (1994). Nucleotide inhibitors and activators of retinal guanylyl cyclase. Biochemistry 33: 3217–3222.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, J.P., Kim, J.L., Kim, E.E., Sintchak, M.D., Thomson, J.A., Fitzgibbon, M.J., Fleming, M.A., Caron, P.R., Hsiao, K., and Navia, M.A. (1995). X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82: 507–522.

    Article  PubMed  CAS  Google Scholar 

  • Haeseleer, F., Sokal, I., Li, N., Pettenati, M., Rao, N., Bronson, D., Wechter, R., Baehr, W., and Palczewski, K. (1999). Molecular characterization of a third member of the guanylyl cyclase- activating protein subfamily. J. Biol. Chem. 274: 6526–6535.

    Article  PubMed  CAS  Google Scholar 

  • Haire, S.E., Pang, J., Boye, S.L., Sokal, I., Craft, C.M., Palczewski, K., Hauswirth, W.W., and Semple-Rowland, S.L. (2006). Light-Driven Cone Arrestin Translocation in Cones of Postnatal Guanylate Cyclase-1 Knockout Mouse Retina Treated with AAV-GC1. Invest Ophthalmol. Vis. Sci 47: 3745–3753.

    Article  PubMed  Google Scholar 

  • Hallett, M.A., Delaat, J.L., Arikawa, K., Schlamp, C.L., Kong, F., and Williams, D.R. (1996). Distribution of guanylate cyclase within photoreceptor outer segments. J. Cell Sci. 109: 1803–1812.

    PubMed  CAS  Google Scholar 

  • Hanein, S., Perrault, I., Gerber, S., Tanguy, G., Barbet, F., Ducroq, D., Calvas, P., Dollfus, H., Hamel, C., Lopponen, T., Munier, F., Santos, L., Shalev, S., Zafeiriou, D., Dufier, J.L., Munnich, A., Rozet, J.M., and Kaplan, J. (2004). Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum. Mutat. 23: 306–317.

    Article  PubMed  CAS  Google Scholar 

  • Howes, K.A., Bronson, J.D., Dang, Y.L., Li, N., Zhang, K., Ruiz, C.C., Helekar, B.S., Lee, M., Subbaraya, I., Kolb, H., Chen, J., and Baehr, W. (1998). Gene array and expression of mouse retina guanylate cyclase activating proteins 1 and 2. Invest. Ophthalmol. & Vis. Sci. 39: 867–875.

    CAS  Google Scholar 

  • Howes, K.A., Pennesi, M.E., Sokal, I., Church-Kopish, J., Schmidt, B., Margolis, D., Frederick, J.M., Rieke, F., Palczewski, K., Wu, S.M., Detwiler, P.B., and Baehr, W. (2002). GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice. EMBO J. 21: 1545–1554.

    Article  PubMed  CAS  Google Scholar 

  • Hurley, J.B. and Dizhoor, A.M. (2000). Heterologous expression and assays for photoreceptor guanylyl cyclases and guanylyl cyclase activating proteins. Methods Enzymol. 315: 708–717.

    Article  PubMed  CAS  Google Scholar 

  • Imanishi, Y., Li, N., Sowa, M.E., Lichtarge, O., Wensel, T.G., Saperstein, D.A., Baehr, W., and Palczewski, K. (2002). Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. Eur. J. Neurosci. 15: 63–78.

    Article  PubMed  Google Scholar 

  • Imanishi, Y., Yang, L., Sokal, I., Filipek, S., Palczewski, K., and Baehr, W. (2004). Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: Characterization of three novel GCAPs (GCAP4, GCAP5, (GCAP7 ) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1-8) in pufferfish (Fugu rubripes). J. Mol. Evol. 59: 204–217.

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., Nakamura, M., Nuno, Y., Ohnishi, Y., Nishida, T., and Miyake, Y. (2004a). Novel complex GUCY2D mutation in Japanese family with cone-rod dystrophy. Invest Ophthalmol. Vis. Sci 45: 1480–1485.

    Article  Google Scholar 

  • Ito, S., Nakamura, M., Ohnishi, Y., and Miyake, Y. (2004b). Autosomal dominant cone-rod dystrophy with R838H and R838C mutations in the GUCY2D gene in Japanese patients. Jpn. J. Ophthalmol. 48: 228–235.

    Article  CAS  Google Scholar 

  • Jiang, L., Katz, B.J., Yang, Z., Zhao, Y., Faulkner, N., Hu, J., Baird, J., Baehr, W., Creel, D.J., and Zhang, K. (2005). Autosomal dominant cone dystrophy caused by a novel mutation in the GCAP1 gene (GUCA1A). Mol. Vis. 11: 143–151.

    PubMed  CAS  Google Scholar 

  • Kelsell, R.E., Gregory-Evans K, Payne, A.M., Perrault, I., Kaplan, J., Yang, R.-B., Garbers, D.L., Bird, A.C., Moore, A.T., and Hunt, D.F. (1998). Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant con-rod dystrophy. Hum. Mol. Genet. 7: 1179–1184.

    Article  PubMed  CAS  Google Scholar 

  • Koch, K.W., Duda, T., and Sharma, R.K. (2002). Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol. Cell Biochem. 230: 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Krispel, C.M., Chen, D., Melling, N., Chen, Y.J., Martemyanov, K.A., Quillinan, N., Arshavsky, V.Y., Wensel, T.G., Chen, C.K., and Burns, M.E. (2006). RGS Expression Rate-Limits Recovery of Rod Photoresponses. Neuron 51: 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Krylov, D.M. and Hurley, J.B. (2001). Identification of proximate regions in a complex of retinal guanylyl cyclase 1 and guanylyl cyclase activating protein-1 by a novel mass spectrometry based method. J Biol. Chem. 276: 30648–30654.

    Article  PubMed  CAS  Google Scholar 

  • Krylov, D.M., Niemi, G.A., Dizhoor, A.M., and Hurley, J.B. (1999). Mapping Sites in Guanylyl Cyclase Activating Protein-1 Required for Regulation of Photoreceptor Membrane Guanylyl Cyclases. J. Biol. Chem. 274: 10833–10839.

    Article  PubMed  CAS  Google Scholar 

  • Laura, R.P., Dizhoor, A.M., and Hurley, J.B. (1996). The membrane guanylyl cyclase retinal guanylyl cyclase-1 is activated through its intracellular domain. J. Biol. Chem. 271: 11646–11651.

    Article  PubMed  CAS  Google Scholar 

  • Laura, R.P. and Hurley, J.B. (1998). The kinase homology domain of retinal guanylyl cyclases 1 and 2 specifies the affinity and cooperativity of interaction with guanylyl cyclase activating protein-2. Biochemistry 37: 11264–11271.

    Article  PubMed  CAS  Google Scholar 

  • LaVail, M.M., Yasumura, D., Matthes, M.T., Drenser, K.A., Flannery, J.G., Lewin, A.S., and Hauswirth, W.W. (2000). Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long- term survival and late-stage therapy. Proc. Natl. Acad. Sci. U. S. A 97: 11488–11493.

    Article  PubMed  CAS  Google Scholar 

  • Lewit-Bentley, A. and Rety, S. (2000). EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10: 637–643.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Seno, K., Nishizawa, Y., Hayashi, F., Yamazaki, A., Matsumoto, H., Wakabayashi, T., and Usukura, J. (1994). Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp. Eye Res. 59: 761–768.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, D.G., Dizhoor, A.M., Liu, K., Gu, Q., Spencer, M., Laura, R., Lu, L., and Hurley, J.B. (1995). Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc. Natl. Acad. Sci. USA 92: 5535–5539.

    Article  PubMed  CAS  Google Scholar 

  • Lyubarsky, A.L., Naarendorp, F., Zhang, X., Wensel, T., Simon, M.I., and Pugh, E.N., Jr. (2001). RGS9-1 is required for normal inactivation of mouse cone phototransduction. Mol. Vis. 7: 71–78.

    PubMed  CAS  Google Scholar 

  • McBee, J.K., Palczewski, K., Baehr, W., and Pepperberg, D.R. (2001). Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog. Retin. Eye Res. 20: 469–529.

    Article  PubMed  CAS  Google Scholar 

  • Mendez, A., Burns, M.E., Sokal, I., Dizhoor, A.M., Baehr, W., Palczewski, K., Baylor, D.A., and Chen, J. (2001). Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc. Natl. Acad. Sci. U. S. A 98: 9948–9953.

    Article  PubMed  CAS  Google Scholar 

  • Michaelides, M., Wilkie, S.E., Jenkins, S., Holder, G.E., Hunt, D.M., Moore, A.T., and Webster, A.R. (2005). Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Ophthalmology 112: 1442–1447.

    Article  PubMed  Google Scholar 

  • Nakayama, S., Moncrief, N.D., and Kretsinger, R.H. (1992). Evolution of EF-hand calcium-modulated proteins II. Domains of several subfamilies have diverse evolutionary histories. J. Mol. Evol. 34: 416–448.

    Article  PubMed  CAS  Google Scholar 

  • Newbold, R.J., Deery, E.C., Payne, A.M., Wilkie, S.E., Hunt, D.M., and Warren, M.J. (2002). Guanylate cyclase activating proteins, guanylate cyclase and disease. Adv. Exp. Med. Biol. 514: 411–438.

    PubMed  CAS  Google Scholar 

  • Newbold, R.J., Deery, E.C., Walker, C.E., Wilkie, S.E., Srinivasan, N., Hunt, D.M., Bhattacharya, S.S., and Warren, M.J. (2001). The destabilization of human GCAP1 by a proline to leucine mutation might cause cone-rod dystrophy. Hum. Mol. Genet 10: 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Nishiguchi, K.M., Sokal, I., Yang, L., Roychowdhury, N., Palczewski, K., Berson, E.L., Dryja, T.P., and Baehr, W. (2004). A Novel Mutation (I143NT) in Guanylate Cyclase-Activating Protein 1 (GCAP1) Associated with Autosomal Dominant Cone Degeneration. Invest Ophthalmol. Vis. Sci 45: 3863–3870.

    Article  PubMed  Google Scholar 

  • Olshevskaya, E.V., Boikov, S., Ermilov, A., Krylov, D., Hurley, J.B., and Dizhoor, A.M. (1999a). Mapping Functional Domains of the Guanylate Cyclase Regulator Protein, GCAP-2. J. Biol. Chem. 274: 10823–10832.

    Article  CAS  Google Scholar 

  • Olshevskaya, E.V., Calvert, P.D., Woodruff, M.L., Peshenko, I.V., Savchenko, A.B., Makino, C.L., Ho, Y.S., Fain, G.L., and Dizhoor, A.M. (2004). The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca 2+ and causes photoreceptor degeneration in transgenic mice. J. Neurosci. 24: 6078–6085.

    Article  PubMed  CAS  Google Scholar 

  • Olshevskaya, E.V., Ermilov, A.N., and Dizhoor, A.M. (1999b). Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J. Biol. Chem. 274: 25583–25587.

    Article  CAS  Google Scholar 

  • Otto-Bruc, A., Buczylko, J., Surgucheva, I., Subbaraya, I., Rudnicka-Nawrot, M., Crabb, J., Arendt, A., Hargrave, P.A., Baehr, W., and Palczewski, K. (1997a). Functional reconstitution of photoreceptor guanylate cyclase with native and mutant forms of guanylate cyclase activating protein 1. Biochemistry 36: 4295–4302.

    Article  CAS  Google Scholar 

  • Otto-Bruc, A., Fariss, R.N., Haeseleer, F., Huang, J., Buczylko, J., Surgucheva, I., Baehr, W., Milam, A.H., and Palczewski, K. (1997b). Localization of guanylate cyclase activating protein 2 in mammalian retinas. Proc. Natl. Acad. Sci. U. S. A 94: 4727–4732.

    Article  CAS  Google Scholar 

  • Padmanabhan, B., Kuzuhara, T., Adachi, N., and Horikoshi, M. (2004). The crystal structure of CCG1/TAF(II)250-interacting factor B (CIB). J. Biol. Chem. 279: 9615–9624.

    Article  PubMed  CAS  Google Scholar 

  • Palczewski, K., Polans, A.S., Baehr, W., and Ames, J.B. (2000). Calcium binding proteins in the retina: Structure, function, and the etiology of human visual diseases. BioEssays 22: 337–350.

    Article  PubMed  CAS  Google Scholar 

  • Palczewski, K., Sokal, I., and Baehr, W. (2004). Guanylate cyclase-activating proteins: structure, function, and diversity. Biochem. Biophys. Res. Commun. 322: 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  • Payne, A.M., Downes, S.M., Bessant, D.A., Taylor, R., Holder, G.E., Warren, M.J., Bird, A.C., and Bhattacharya, S.S. (1998). A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum. Mol. Genet. 7: 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Payne, A.M., Morris, A.G., Downes, S.M., Johnson, S., Bird, A.C., Moore, A.T., Bhattacharya, S.S., and Hunt, D.M. (2001). Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. J. Med. Genet. 38: 611–614.

    Article  PubMed  CAS  Google Scholar 

  • Pennesi, M.E., Howes, K.A., Baehr, W., and Wu, S.M. (2003). Guanylate cyclase-activating protein (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice. Proc. Natl. Acad. Sci U. S. A 100: 6783–6788.

    Article  PubMed  CAS  Google Scholar 

  • Perrault, I., Hanein, S., Gerber, S., Lebail, B., Vlajnik, P., Barbet, F., Ducroq, D., Dufier, J.L., Munnich, A., Kaplan, J., and Rozet, J.M. (2005). A novel mutation in the GUCY2D gene responsible for an early onset severe RP different from the usual GUCY2D-LCA phenotype. Hum. Mutat.25: 222.

    Article  PubMed  CAS  Google Scholar 

  • Perrault, I., Rozet, J.M., Gerber, S., Ghazi, I., Ducroq, D., Souied, E., Leowski, C., Bonnemaison, M., Dufier, J.L., Munnich, A., and Kaplan, J. (2000). Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur. J. Hum. Genet. 8: 578–582.

    Article  PubMed  CAS  Google Scholar 

  • Perrault, I., Rozet, J.M., Gerber, S., Kelsell, R.E., Souied, E., Cabot, A., Hunt, D.M., Munnich, A., and Kaplan, J. (1998). A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am. J. Hum. Genet. 63: 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Perrault, I., Rozet, J.-M., Calvas, P., Gerber, S., Camuzat, A., Dollfus, H., Chatelin, S., Souied, E., Ghazi, I., Leowski, C., Bonnermaison, M., Le Paslier, D., Frezal, J., Dufier, J.-L., Pittler, S.J., Munnich, A., and Kaplan, J. (1996). Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nature Genet. 14: 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Polans, A., Baehr, W., and Palczewski, K. (1996). Turned on by Ca 2+ ! The physiology and pathology of Ca 2+ binding proteins in the retina. Trends Neurosci. 19: 547–554.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, E.N., Jr., Duda, T., Sitaramayya, A., and Sharma, R.K. (1997). Photoreceptor guanylate cyclases: a review. Biosci. Rep. 17: 429–473.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, E.N., Jr., Nikonov, S., and Lamb, T.D. (1999). Molecular mechanisms of vertebrate photoreceptor light adaptation. Curr. Opin. Neurobiol. 9: 410–418.

    Article  PubMed  CAS  Google Scholar 

  • Rozet, J.M., Perrault, I., Gerber, S., Hanein, S., Barbet, F., Ducroq, D., Souied, E., Munnich, A., and Kaplan, J. (2001). Complete abolition of the retinal-specific guanylyl cyclase (retGC-1) catalytic ability consistently leads to leber congenital amaurosis (LCA). Invest Ophthalmol. Vis. Sci 42: 1190–1192.

    PubMed  CAS  Google Scholar 

  • Rudnicka-Nawrot, M., Surgucheva, I., Hulmes, J.D., Haeseleer, F., Sokal, I., Crabb, J.W., Baehr, W., and Palczewski, K. (1998). Changes in biological activity and folding of guanylate cyclase-activating protein 1 as a function of calcium. Biochemistry 37: 248–257.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M., Nakazawa, M., Usui, T., Tanimoto, N., Abe, H., and Ohguro, H. (2005). Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies. Graefes Arch. Clin. Exp. Ophthalmol. 243: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Seebacher, T., Beitz, E., Kumagami, H., Wild, K., Ruppersberg, J.P., and Schultz, J.E. (1999). Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear. Hear. Res. 127: 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Semple-Rowland, S.L., Lee, N.R., Van Hooser, J.P., Palczewski, K., and Baehr, W. (1998). A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc. Natl. Acad. Sci. USA 95: 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  • Sitaramayya, A., Duda, T., and Sharma, R.K. (1995). Regulation of bovine rod outer segment membrane guanylate cyclase by ATP. Mol. Cell. Biochem. 148: 139–145.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, I., Alekseev, A., Baehr, W., Haeseleer, F., and Palczewski, K. (2002). Soluble fusion proteins between single transmembrane photoreceptor guanylyl cyclases and their activators. Biochemistry 41: 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, I., Dupps, W.J., Andorf, J.A., Schrum, K.M., Melendez, K.A., Roychowdhury, N., Yang, L., Filipek, S., Palczewski, K., Stone, E.M., and Baehr, W. (2004). A Novel GCAP1 Missense Mutation (L151F) in a Large Family with Autosomal Dominant Cone-Rod Dystrophy. Invest Ophthalmol. Vis. Sci submitted.

    Google Scholar 

  • Sokal, I., Li, N., Verlinde, C.L., Haeseleer, F., Baehr, W., and Palczewski, K. (2000). Ca 2+ -binding proteins in the retina: from discovery to etiology of human disease. Biochim. Biophys. Acta 1498: 233–251.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, I., Otto-Bruc, A.E., Surgucheva, I., Verlinde, C.L., Wang, C.K., Baehr, W., and Palczewski, K. (1999). Conformational changes in guanylyl cyclase-activating protein 1 (GCAP1) and its tryptophan mutants as a function of calcium concentration. J. Biol. Chem. 274: 19829–19837.

    Article  PubMed  CAS  Google Scholar 

  • Stephen, R., Palczewski, K., and Sousa, M.C. (2006). The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies. J. Mol. Biol. 359: 266–275.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, C.L., Ramamurthy, V., Pina, A.L., Loyer, M., Dharmaraj, S., Li, Y., Maumenee, I.H., Hurley, J.B., and Koenekoop, R.K. (2004). Functional analyses of mutant recessive GUCY2D alleles identified in Leber congenital amaurosis patients: protein domain comparisons and dominant negative effects. Mol. Vis. 10: 297–303.

    PubMed  CAS  Google Scholar 

  • Tucker, C.L., Woodcock, S.C., Kelsell, R.E., Ramamurthy, V., Hunt, D.M., and Hurley, J.B. (1999). Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proc. Natl. Acad. Sci. U. S. A 96: 9039–9044.

    Article  PubMed  CAS  Google Scholar 

  • Van Ghelue, M., Eriksen, H.L., Ponjavic, V., Fagerheim, T., Andreasson, S., Forsman-Semb, K., Sandgren, O., Holmgren, G., and Tranebjaerg, L. (2000). Autosomal dominant cone-rod dystrophy due to a missense mutation (R838C) in the guanylate cyclase 2D gene (GUCY2D) with preserved rod function in one branch of the family. Ophthalmic Genet 21: 197–209.

    Article  PubMed  Google Scholar 

  • Vijay-Kumar, S. and Kumar, V.D. (1999). Crystal structure of recombinant bovine neurocalcin. Nat. Struct. Biol. 6: 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Wilkie, S.E., Li, Y., Deery, E.C., Newbold, R.J., Garibaldi, D., Bateman, J.B., Zhang, H., Lin, W., Zack, D.J., Bhattacharya, S.S., Warren, M.J., Hunt, D.M., and Zhang, K. (2001). Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am. J Hum. Genet 69: 471–480.

    Article  PubMed  CAS  Google Scholar 

  • Williams, M.L., Coleman, J.E., Haire, S.E., Aleman, T.S., Cideciyan, A.V., Sokal, I., Palczewski, K., Jacobson, S.G., and Semple-Rowland, S.L. (2006). Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS. Med. 3: e201.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, A., Yamazaki, M., Yamazaki, R.K., and Usukura, J. (2006). Illuminated rhodopsin is required for strong activation of retinal guanylate cyclase by guanylate cyclase-activating proteins. Biochemistry 45: 1899–1909.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, M., Usukura, J., Yamazaki, R.K., and Yamazaki, A. (2005). ATP binding is required for physiological activation of retinal guanylate cyclase. Biochem. Biophys. Res. Commun. 338: 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  • Yang, R.B., Fulle, H.J., and Garbers, D.L. (1996). Chromosomal localization and genomic organization of genes encoding guanylyl cyclase receptors expressed in olfactory sensory neurons and retina. Genomics 31: 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Yang, R.B. and Garbers, D.L. (1997). Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J. Biol. Chem. 272: 13738–13742.

    Article  PubMed  CAS  Google Scholar 

  • Yang, R.B., Robinson, S.W., Xiong, W.H., Yau, K.W., Birch, D.G., and Garbers, D.L. (1999). Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J. Neurosci. 19: 5889–5897.

    PubMed  CAS  Google Scholar 

  • Yu, H., Olshevskaya, E., Duda, T., Seno, K., Hayashi, F., Sharma, R.K., Dizhoor, A.M., and Yamazaki, A. (1999). Activation of retinal guanylyl cyclase-1 by Ca 2+ -binding proteins involves its dimerization. J. Biol. Chem. 274: 15547–15555.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

BAEHR, W., PALCZEWSKI, K. (2007). Guanylate Cyclase-Activating Proteins and Retina Disease. In: Carafoli, E., Brini, M. (eds) Calcium Signalling and Disease. Subcellular Biochemistry, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6191-2_4

Download citation

Publish with us

Policies and ethics