Skip to main content

Molecular Biology of the Crimean-Congo Hemorrhagic Fever Virus

  • Chapter
Crimean-Congo Hemorrhagic Fever

Crimean-Congo hemorrhagic fever virus (CCHFV) is a member of the family Bunyaviridae. This family comprises more than 300 virus species grouped into five distinct genera: Orthobunyavirus, Hantavirus, Phlebovirus, Nairovirus, and Tospovirus [15]. The genus Nairovirus consists of seven different serogroups, but only two of them are human pathogens [9]. The CCHF group contains CCHFV and the nonhuman pathogenic Hazara virus; the Nairobi sheep disease group includes the pathogenic Nairobi sheep disease and Dugbe viruses [54, 57]. All members of the genus Nairovirus are transmitted by ticks (argasids and ixodids); CCHFV most efficiently by members of the genus Hyalomma, followed by Rhipicephalus and Dermacentor [29, 35]. The natural cycle of CCHFV includes transovarial and transstadial transmission among ticks and a tick–vertebrate host cycle involving wild (e.g. hares, hedgehogs) and domestic animals (e.g. ostriches, cattle) [29, 53, 58].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson AM, Melin L, Bean A, Pettersson RF (1997) A retention signal necessary and sufficient for Golgi localization maps to the cytoplasmic tail of a Bunyaviridae (Uukuniemi virus) membrane glycoprotein. J Virol 71:4717–4727.

    PubMed  CAS  Google Scholar 

  2. Andersson AM, Pettersson, RF (1998) Targeting of a short peptide derived from the cytoplasmic tail of the G1 membrane glycoprotein of Uukuniemi virus (Bunyaviridae) to the Golgi complex. J Virol 72:9585–9596.

    PubMed  CAS  Google Scholar 

  3. Andersson I, Simon M, Lundkvist A, Nilsson M, Holmstrom A, Elgh F, Mirazimi A (2004) Role of actin filaments in targeting of Crimean-Congo hemorrhagic fever virus nucleocapsid protein to perinuclear regions of mammalian cells. J Med Virol 72:83–93.

    Article  PubMed  CAS  Google Scholar 

  4. Barr JN, Elliott RM, Dunn EF, Wertz GW (2003) Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. Virology 311:326–338.

    Article  PubMed  CAS  Google Scholar 

  5. Barr JN, Wertz GW (2004) Bunyamwera bunyavirus RNA synthesis requires cooperation of 3'- and 5'-terminal sequences. J Virol 78:1129–1138.

    Article  PubMed  CAS  Google Scholar 

  6. Bertolotti-Ciarlet A, Smith J, Strecker K, Paragas J, Altamura LA, McFalls JM, Frias-Staheli N, Garcia-Sastre A, Schmaljohn CS, Doms RW (2005) Cellular localization and antigenic characterization of crimean-congo hemorrhagic fever virus glycoproteins. J Virol 79:6152–6161.

    Article  PubMed  CAS  Google Scholar 

  7. Beyer WR, Popplau D, Garten W, von Laer D, Lenz O (2003) Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol 77:2866–2872.

    Article  PubMed  CAS  Google Scholar 

  8. Blakqori G, Weber F (2005) Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J Virol 79:10420–10428.

    Article  PubMed  CAS  Google Scholar 

  9. Burt FJ, Spencer DC, Leman PA, Patterson B, Swanepoel R (1996) Investigation of tick-borne viruses as pathogens of humans in South Africa and evidence of Dugbe virus infection in a patient with prolonged thrombocytopenia. Epidemiol Infect 116:353–361.

    Article  PubMed  CAS  Google Scholar 

  10. Chen SY, Compans RW (1991) Oligomerization, transport, and Golgi retention of Punta Toro virus glycoproteins. J Virol 65:5902–5909.

    PubMed  CAS  Google Scholar 

  11. Chen SY, Matsuoka Y, Compans RW (1991). Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology 183:351–365.

    Article  PubMed  CAS  Google Scholar 

  12. Clerex-Van Haaster CM, Clerex JP, Ushijima H, Akashi H, Fuller F, Bishop DH (1982) The 3' terminal RNA sequences of bunyaviruses and nairoviruses (Bunyaviridae): evidence of end sequence generic differences within the virus family. J Gen Virol 61 (Pt 2):289–292.

    Article  PubMed  Google Scholar 

  13. Clerx JP, Casals J, Bishop DH (1981) Structural characteristics of nairoviruses (genus Nairovirus, Bunyaviridae). J Gen Virol 55:165–178.

    Article  PubMed  CAS  Google Scholar 

  14. Elliott RM (1996) The Bunyaviridae. Plenum Press, New York/London.

    Google Scholar 

  15. Elliott RM, Bouloy M, Calisher CH, Goldbach R, Moyer JT, Nichol ST, Pettersson RF, Plyusnin A, Schmaljohn CS (2000) Family Bunyaviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, Cartens EB, Estes MK, Lemon S, Maniloff J, Mayo MA, McGeogch D, Pringle CR, Wickner RB (eds) Virus taxonomy-classification and nomenclature of viruses. Seventh report of the international committee on taxonomy of viruses. Academic Press, San Diego, pp 599–621.

    Google Scholar 

  16. Elliott RM, Schmaljohn CS, Collett MS (1991) Bunyaviridae genome structure and gene expression. Curr Top Microbiol Immunol 169:91–141.

    PubMed  CAS  Google Scholar 

  17. Flick K, Hooper JW, Schmaljohn CS, Pettersson RF, Feldmann H, Flick R (2003) Rescue of Hantaan virus minigenomes. Virology 306:219–224.

    Article  PubMed  CAS  Google Scholar 

  18. Flick K, Katz A, Overby A, Feldmann H, Pettersson RF, Flick R (2004) Functional analysis of the noncoding regions of the Uukuniemi virus (Bunyaviridae) RNA segments. J Virol 78:11726–11738.

    Article  PubMed  CAS  Google Scholar 

  19. Flick R, Elgh F, Pettersson RF (2002) Mutational analysis of the Uukuniemi virus (Bunyaviridae family) promoter reveals two elements of functional importance. J Virol 76:10849–10860.

    Article  PubMed  CAS  Google Scholar 

  20. Flick R, Flick K, Feldmann H, Elgh F (2003) Reverse genetics for Crimean-Congo hemorrhagic fever virus. J Virol 77:5997–6006.

    Article  PubMed  CAS  Google Scholar 

  21. Flick R, Hobom G (1999) Transient bicistronic vRNA segments for indirect selection of recombinant influenza viruses. Virology 262:93–103.

    Article  PubMed  CAS  Google Scholar 

  22. Flick R, Pettersson RF (2001) Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75:1643–1655.

    Article  PubMed  CAS  Google Scholar 

  23. Flick R, Whitehouse CA (2005) Crimean-Congo hemorrhagic fever virus. Curr Mol Med 5:753–760.

    Article  PubMed  CAS  Google Scholar 

  24. Gerrard SR, Nichol ST (2002) Characterization of the Golgi retention motif of Rift Valley fever virus G(N) glycoprotein. J Virol 76:12200–12210.

    Article  PubMed  CAS  Google Scholar 

  25. Haferkamp S, Fernando L, Schwarz TF, Feldmann H, Flick R (2005) Intracellular localization of Crimean-Congo hemorrhagic fever (CCHF) virus glycoproteins. Virol J 2:42–56.

    Article  PubMed  Google Scholar 

  26. Hewlett MJ, Pettersson RF, Baltimore D (1977) Circular forms of Uukuniemi virion RNA: an electron microscopic study. J Virol 21:1085–1093.

    PubMed  CAS  Google Scholar 

  27. Honig JE, Osborne JC, Nichol ST (2004) Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology 321:29–35.

    Article  PubMed  CAS  Google Scholar 

  28. Honig JE, Osborne JC, Nichol ST (2004) The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 318:10–16.

    Article  PubMed  CAS  Google Scholar 

  29. Hoogstraal H (1979) The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 15:307–417.

    PubMed  CAS  Google Scholar 

  30. Kawaoka Y (2004) Biology of negative strand RNA viruses: power of reverse genetics. Curr Top Microbiol Immunol 283.

    Google Scholar 

  31. Kinsella E, Martin SG, Grolla A, Czub M, Feldmann H, Flick R (2004) Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321:23–28.

    Article  PubMed  CAS  Google Scholar 

  32. Kohl A, Bridgen A, Dunn E, Barr JN, Elliott RM (2003) Effects of a point mutation in the 3' end of the S genome segment of naturally occurring and engineered Bunyamwera viruses. J Gen Virol 84:789–793.

    Article  PubMed  CAS  Google Scholar 

  33. Lappin DF, Nakitare GW, Palfreyman JW, Elliott RM (1994) Localization of Bunyamwera bunyavirus G1 glycoprotein to the Golgi requires association with G2 but not with NSm. J Gen Virol 75 (Pt 12):3441–3451.

    Google Scholar 

  34. .Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W (2001) The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci USA 98:12701–12705.

    Article  PubMed  CAS  Google Scholar 

  35. Logan TM, Linthicum KJ, Bailey CL, Watts DM, Moulton JR (1989) Experimental transmission of Crimean-Congo hemorrhagic fever virus by Hyalomma truncatum Koch. Am J Trop Med Hyg 40:207–212.

    PubMed  CAS  Google Scholar 

  36. Marriott AC, Nuttall PA (1996) Large RNA segment of Dugbe nairovirus encodes the putative RNA polymerase. J Gen Virol 77 (Pt 8):1775–1780.

    Google Scholar 

  37. Matsuoka Y, Chen SY, Compans RW (1994) A signal for Golgi retention in the bunyavirus G1 glycoprotein. J Biol Chem 269:22565–22573.

    PubMed  CAS  Google Scholar 

  38. Matsuoka Y, Chen SY, Holland CE, Compans RW (1996) Molecular determinants of Golgi retention in the Punta Toro virus G1 protein. Arch Biochem Biophys 336:184–189.

    Article  PubMed  CAS  Google Scholar 

  39. Meissner JD, Seregin SS, Seregin SV, Vyshemirskii OI, Samokhvalov EI, Lvov DK, Netesov SV, Petrov VS (2006) A variable region in the Crimean-Congo hemorrhagic fever virus L segment distinguishes between strains isolated from different geographic regions. J Med Virol 78:223–228.

    Article  PubMed  Google Scholar 

  40. Neumann G, Kawaoka Y (2004) Reverse genetics systems for the generation of segmented negative-sense RNA viruses entirely from cloned cDNA. Curr Top Microbiol Immunol 283:43–60.

    PubMed  CAS  Google Scholar 

  41. Neumann G, Zobel A, Hobom G (1994) RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202:477–479.

    Article  PubMed  CAS  Google Scholar 

  42. Osborne JC, Elliott RM (2000) RNA binding properties of bunyamwera virus nucleocapsid protein and selective binding to an element in the 5' terminus of the negative-sense S segment. J Virol 74:9946–9952.

    Article  PubMed  CAS  Google Scholar 

  43. Papa A, Ma B, Kouidou S, Tang Q, Hang C, Antoniadis A (2002) Genetic characterization of the m RNA segment of Crimean-Congo hemorrhagic fever virus strains, China. Emerg Infect Dis 8:50–53.

    Article  PubMed  CAS  Google Scholar 

  44. Pettersson RF, Andersson A, Melin L (1995) Mapping a retention signal for Golgi localization of a viral spike protein complex. Cold Spring Harb Symp Quant Biol 60:147–155.

    PubMed  CAS  Google Scholar 

  45. Prehaud C, Lopez N, Blok MJ, Obry V, Bouloy M (1997) Analysis of the 3' terminal sequence recognized by the Rift Valley fever virus transcription complex in its ambisense S segment. Virology 227:189–197.

    Article  PubMed  CAS  Google Scholar 

  46. Sanchez AJ, Vincent MJ, Erickson BR, Nichol ST (2006) Crimean-Congo hemorrhagic fever virus glycoprotein precursor is cleaved by Furin-like and SKI-1 proteases to generate a novel 38-kilodalton glycoprotein. J Virol 80:514–525.

    Article  PubMed  CAS  Google Scholar 

  47. Sanchez AJ, Vincent MJ, Nichol ST (2002) Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 76:7263–7275.

    Article  PubMed  CAS  Google Scholar 

  48. Schmaljohn CS, Hooper JW (2001) Bunyaviridae: The viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology, vol 2, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1581–1602.

    Google Scholar 

  49. Schmaljohn CS, Le Duc JW (1998) Bunyaviridae, 9th edn. Edward Arnold, London.

    Google Scholar 

  50. Seidah NG, Mowla SJ, Hamelin J, Mamarbachi AM, Benjannet S, Toure BB, Basak A, Munzer JS, Marcinkiewicz J, Zhong M, Barale JC, Lazure C, Murphy RA, Chretien M, Marcinkiewicz M (1999) Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc Natl Acad Sci USA 96:1321–1326.

    Article  PubMed  CAS  Google Scholar 

  51. Shi X, Elliott RM (2004) Analysis of N-linked glycosylation of hantaan virus glycoproteins and the role of oligosaccharide side chains in protein folding and intracellular trafficking. J Virol 78:5414–5422.

    Article  PubMed  CAS  Google Scholar 

  52. Spiropoulou CF, Goldsmith CS, Shoemaker TR, Peters CJ, Compans RW (2003) Sin Nombre virus glycoprotein trafficking. Virology 308:48–63.

    Article  PubMed  CAS  Google Scholar 

  53. Swanepoel R (1995) Nairovirus Infections, Chapman & Hall, London, pp 285–293.

    Google Scholar 

  54. van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (2000) Seventh Report of the International Committee of Taxonomy of Viruses, Academic Press, San Diego, CA.

    Google Scholar 

  55. Vincent MJ, Sanchez AJ, Erickson BR, Basak A, Chretien M, Seidah NG, Nichol ST (2003) Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J Virol 77:8640–8649.

    Article  PubMed  CAS  Google Scholar 

  56. Walpita P, Flick R (2005) Reverse genetics of negative-stranded RNA viruses: a global perspective. FEMS Microbiol Lett 244:9–18.

    Article  PubMed  CAS  Google Scholar 

  57. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H (1988) Crimean-Congo hemorrhagic fever. In: Monath TP (ed.), The Arboviruses: Epidemiology and Ecology, vol II. CRC Press, Boca Raton, FL, pp 177–222.

    Google Scholar 

  58. Zeller HG, Cornet JP, Camicas JL (1994) Experimental transmission of Crimean-Congo hemorrhagic fever virus by West African wild ground-feeding birds to Hyalomma marginatum rufipes ticks. Am J Trop Med Hyg 50:676–681.

    PubMed  CAS  Google Scholar 

  59. Zobel A, Neumann G, Hobom G (1993) RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Res 21:3607–3614.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Flick, R. (2007). Molecular Biology of the Crimean-Congo Hemorrhagic Fever Virus. In: Ergonul, O., Whitehouse, C.A. (eds) Crimean-Congo Hemorrhagic Fever. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6106-6_4

Download citation

Publish with us

Policies and ethics