Skip to main content

Ecology of Tick-Borne Disease and the Role of Climate

  • Chapter
Book cover Crimean-Congo Hemorrhagic Fever

Crimean-Congo hemorrhagic Fever (CCHF) is unusual among vector-borne zoonoses in that, as well as the virus being transmitted to humans if they accidentally intrude on the natural transmission cycle by being bitten by ticks, the virus is also commonly transmitted directly to humans from its natural wildlife and livestock hosts (and even human patients) via contact or contamination with infected tissue or blood. The epidemiology of human disease therefore follows a pattern that is greatly influenced by employment practices that bring humans into close contact with livestock, whether alive or, even more riskily, dead. In tanneries, for example, ticks that detach from hides may reattach to humans, potentially transferring the infection much more rapidly than via the conventional transmission route that involves a long delay between the engorged infected tick of one stage and the feeding tick of the next stage. Nevertheless, like all other vector-borne diseases, the presence and persistence of zoonotic foci of infection depend on biological and ecological relationships between three very different kinds of organisms: virus, ticks, and vertebrates. These three must interact not only physically and biologically to permit each complete act of transmission, but also ecologically to permit continuing cycles of transmission. Although the focus of epidemiological interest is on the pattern of human cases, explanations for the described distribution and abundance of infections must come from understanding the underlying ecological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson RM, May RM (1992) Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford

    Google Scholar 

  2. Brown RN, Lane RS, Dennis DT (2005) Geographic distribution of tick-borne diseases and their vectors. In: Goodman JL, Dennis DT, Sonenshine DE (eds) Tick-borne Diseases of Humans. ASM Press, Washington, DC, pp 363–391

    Google Scholar 

  3. Burt FJ, Swanepoel R (2005) Crimean-Congo hemorrhagic fever. In: Goodman JL, Dennis D, Sonenshine DE (eds) Tick-borne Diseases of Humans. ASM Press, Washington, DC, pp 164–175

    Google Scholar 

  4. Craine NG, Randolph SE, Nuttall PA (1995) Seasonal variation in the rôle of grey squirrels as hosts of Ixodes ricinus, the tick vector of the Lyme disease spirochaete, in a British woodland. Folia Parasitol 42:73–80

    PubMed  CAS  Google Scholar 

  5. Dizij A, Kurtenbach K (1995) Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol 17:177–183

    Article  PubMed  CAS  Google Scholar 

  6. Dunster L, Dunster M, Ofula V, Beti D, Kazooba-Voskamp F, Burt FJ, Swanepoel R, DeCock KM (2002) First documentation of human Crimean-Congo hemorrhagic fever, Kenya. Emerg Infect Dis 8:1005–1006

    PubMed  Google Scholar 

  7. Ergönül O (2006) Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6:203–214

    Article  PubMed  Google Scholar 

  8. Ergönül O, Akgunduz S, Kocaman I, Vatansever Z, Korten V (2005) Changes in temperature and the Crimean Congo haemorrhagic fever outbreak in Turkey. Clin Microbiol Infect 11 (Suppl 2):360

    Google Scholar 

  9. Ergönül O, Celikbas A, Dokuzoguz B, Eren S, Baykam N, Esener H (2004) The characteristics of Crimean-Congo hemorrhagic fever in a recent outbreak in Turkey and the impact of oral ribavirin therapy. Clin Infect Dis 39:285–289

    Article  Google Scholar 

  10. Giladi M, Metzkor-Cotter E, Martin D, Siegman-Igra Y, Korczyn A, Rosso R, Berger S, Campbell G, Lanciotti R (2001) West Nile Encephalitis in Israel, 1999: the New York connection. Emerg Infect Dis 7:659–661

    Article  PubMed  CAS  Google Scholar 

  11. Gilbert L, Norman R, Laurenson MK, Reid HW, Hudson PJ (2001) Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. J Anim Ecol 70:1053–1061

    Article  Google Scholar 

  12. Hay SI, Graham AJ, Rogers DJ (2006) Global Mapping of Infectious Diseases. Academic Press, London

    Google Scholar 

  13. Hay SI, Randolph SE, Rogers DJ (2000) Remote Sensing and Geographical Information Systems in Epidemiology. Academic Press, London

    Google Scholar 

  14. Hay SI, Tucker CJ, Rogers DJ, Packer MJ (1996) Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease. Ann Trop Med Parasitol 90:1–19

    PubMed  CAS  Google Scholar 

  15. Hoogstraal H (1979) The epidemiology of tick borne Crimean-Congo hemorrhagic fever in Asia, Europe and Africa. J Med Entomol 15:307–417

    PubMed  CAS  Google Scholar 

  16. Horak IG, Fourie LJ, Novelle PA, Williams EJ (1991) Parasites of domestic and wild animals in South Africa. XXVI. The mosaic of Ixodid tick infestations on birds and mammals in the Mountain Zebra National Park. Onderstepoort J Vet Res 58:125–136

    PubMed  CAS  Google Scholar 

  17. Jääskeläinen J, Tikkakoski T, Uzcategui NY, Alekseev AN, Vaheri A, Vapalhti O (2006) Siberian sub-type tick-borne encephalitis virus, Finland. Emerg Infect Dis 12:1568–1571

    PubMed  Google Scholar 

  18. Karti SS, Odabasi Z, Korten V (2004) Crimean-Congo hemorrhagic fever in Turkey. Emerg Infect Dis 10:1379–1384

    PubMed  Google Scholar 

  19. Kurtenbach K, Peacey MF, Rijpkema SGT, Hoodless AN, Nuttall PA, Randolph SE (1998) Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64:1169–1174

    PubMed  CAS  Google Scholar 

  20. Labuda M, Austyn JM, Zuffova E, Kozuch O, Fuchsberger N, Lysy J, Nuttall PA (1996) Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology 219:357–366

    Article  PubMed  CAS  Google Scholar 

  21. Labuda M, Nuttall PA, Kozuch O, Eleckova E, Williams T, Zuffova E, Sabo A (1993) Non-viremic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia 49:802–805

    Article  PubMed  CAS  Google Scholar 

  22. Labuda M, Randolph SE (1999) Survival of tick-borne encephalitis virus: cellular basis and environmental determinants. Zentralbl Bakteriol 288:513–524

    Google Scholar 

  23. Magano SR, Els DA, Chown SL (2000) Feeding patterns of immature stages of Hyalomma truncatum and Hyalomma marginatum rufipes on different hosts. Exp Appl Acarol 24:301–313

    Article  PubMed  CAS  Google Scholar 

  24. Mardani M, Jahromi MK, Naieni KH, Zeinali M (2003) The efficacy of oral ribavirin in the treatment of Crimean-Congo hemorrhagic fever in Iran. Trans R Soc Trop Med Hyg 36:1613–1618

    CAS  Google Scholar 

  25. McConnell J (2006) Avian influenza goes global, but don't blame the birds. Lancet Infect Dis 6:185

    Article  Google Scholar 

  26. Mount GA, Haile DG, Daniels E (1997) Simulation of blacklegged tick (Acari: Ixodidae) population dynamics and transmission of Borrelia burgdorferi. J Med Entomol 34:461–484

    PubMed  CAS  Google Scholar 

  27. Olsen B, Duffy DC, Jaenson TGT, Gylfe A, Bonnedahl J, Bergström SA (1995) Trans hemispheric exchange of Lyme disease spirochaetes by seabirds. J Clin Microbiol 33:3270–3274

    PubMed  CAS  Google Scholar 

  28. Oncul O, Turham V, Cavuslu S (2006) H5N1 avian influenza: the Turkish dimension. Lancet Infect Dis 6:186–187

    Article  PubMed  CAS  Google Scholar 

  29. Papa A, Bino S, Llagami A, Brahimaj B, Papadimitriou E, Pavlidou V, Velo E, Cahani G, Hajdini M, Pilaca A, Harxhi A, Antoniadis A (2002) Crimean-Congo hemorrhagic fever in Albania. Eur J Clin Microbiol Infect Dis 21:603–606

    Article  PubMed  CAS  Google Scholar 

  30. Papa A, Bozovic B, Pavlidou V, Papadimitriou E, Pelemis M, Antoniadis A (2002) Genetic detection and isolation of Crimean-Congo hemorrhagic fever virus, Kosovo, Yugoslavia. Emerg Infect Dis 8:852–854

    Article  PubMed  Google Scholar 

  31. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  32. Randolph SE (1998) Ticks are not insects: consequences of contrasting vector biology for transmission potential. Parasitol Today 14:186–192

    Article  PubMed  CAS  Google Scholar 

  33. Randolph SE (2004) Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129 (Suppl):S37–S66

    Google Scholar 

  34. Randolph SE, Craine NG (1995) General framework for comparative quantitative studies on transmission of tick-borne diseases using Lyme borreliosis Europe as an example. J Med Entomol 32:765–777

    PubMed  CAS  Google Scholar 

  35. Randolph SE, Gern L, Nuttall PA (1996) Co-feeding ticks: epidemiological significance for tick-borne pathogen transmission. Parasitol Today 12:472–479

    Article  PubMed  CAS  Google Scholar 

  36. Randolph SE, Green RM, Peacey MF, Rogers DJ (2000) Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121:15–23

    Article  PubMed  Google Scholar 

  37. Randolph SE, Miklisová D, Lysy J, Rogers DJ, Labuda M (1999) Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118:177–186

    Article  PubMed  Google Scholar 

  38. Randolph SE, Rogers DJ (1997) A generic population model for the African tick Rhipicephalus appendiculatus. Parasitology 115:265–279

    Article  PubMed  Google Scholar 

  39. Randolph SE, Rogers DJ (2000) Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc R Soc Lond B 267:1741–744

    Article  CAS  Google Scholar 

  40. Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36:741–748

    PubMed  CAS  Google Scholar 

  41. Rechav Y, Fielden LJ (1997) The effect of various host species on the feeding performance of immature stages of the tick Hyalomma truncatum (Acari: Ixodidae). Exp Appl Acarol 21:551–559

    Article  PubMed  CAS  Google Scholar 

  42. Rogers DJ (2000) Satellites, space, time and the African Trypanosomiases. Adv Parasitol 47:130–173

    Google Scholar 

  43. Rogers DJ, Hay SI, Packer MJ (1996) Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann Trop Med Parasitol 90:225–241

    PubMed  CAS  Google Scholar 

  44. Rogers DJ, Hay SI, Packer MJ, Wint GRW (1997) Mapping land-cover over large-areas using multispectral data derived from the NOAA-AVHRR: a case study of Nigeria. Int J Remote Sens 18:3297–3303

    Article  Google Scholar 

  45. Rogers DJ, Packer MJ (1993) Vector-borne diseases, models and global change. Lancet 342:1282–1284

    Article  PubMed  CAS  Google Scholar 

  46. Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766

    Article  PubMed  CAS  Google Scholar 

  47. Rogers DJ, Randolph SE (2003) Studying the global distribution of infectious diseases using GIS and RS. Nat Rev Microbiol 1:231–236

    Article  PubMed  CAS  Google Scholar 

  48. Rogers DJ, Williams BG (1994) Tsetse distribution in Africa: seeing the wood and the trees. In: Edwards PJ, May RM, Webb NR (eds) Large-scale Ecology and Conservation Biology. Blackwell Scientific, Oxford, pp 249–273

    Google Scholar 

  49. Sandberg S, Awerbuch TE, Spielman A (1992) A comprehensive multiple matrix model representing the life cycle of the tick that transmits the agent of Lyme disease. J Theor Biol 157:203–220

    Article  PubMed  CAS  Google Scholar 

  50. Shepherd AJ, Leman PA, Swanepoel R (1989) Viremia and antibody response of small African and laboratory animals to Crimean-Congo hemorrhagic fever virus infection. Am J Trop Med Hyg 40:541–547

    PubMed  CAS  Google Scholar 

  51. Shepherd AJ, Swanepoel R, Leman PA, Shepherd SP (1987) Field and laboratory investigation of Crimean-Congo hemorrhagic fever virus (Nairovirus, family Bunyaviridae) infection in birds. Trans R Soc Trop Med Hyg 81:1004–1007

    Article  PubMed  CAS  Google Scholar 

  52. Shepherd AJ, Swanepoel R, Shepherd SP, Lenan PA, Mathee O (1991) Viremic transmission of Crimean-Congo hemorrhagic fever virus to ticks. Epidemiol Infect 106:373–382

    Article  PubMed  CAS  Google Scholar 

  53. Tatem AJ, Hay SI, Rogers DJ (2006) Global traffic and disease vector dispersal. PNAS 103:6242–6247

    Article  PubMed  CAS  Google Scholar 

  54. Tomassone L, Camicas JL, Pagani P, Tanat Diallo O, Mannelli A, de Meneghi D (2004) Monthly dynamics of ticks (Acari: Ixodidae) infesting N'Dama cattle in the Republic of Guinea. Exp Appl Acarol 32:209–218

    Article  PubMed  Google Scholar 

  55. Walker AR, Bouttaour A, Camicas JL, Estrada-Peña A, Horak IG, Latif AA, Pegram RG, Preston PM (2003) Ticks of domestic animals in Africa: a guide to identification of species. Bioscience Reports, University of Edinburgh, Edinburgh

    Google Scholar 

  56. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H (1988) Crimean-Congo hemorrhagic fever. In: Monath TP (ed.) The Arboviruses: Epidemiology and Ecology. CRC Press, Boca Raton, FL, pp 177–222

    Google Scholar 

  57. Watts DM, Ksiazek TG, Linthicum KJ, Hoogstraal H (1989) Crimean-Congo hemorrhagic fever. In: Monath TP (ed.) The Arboviruses: Epidemiology and Ecology. CRC Press, Boca Raton, FL, pp 177–222

    Google Scholar 

  58. Whitehouse CA (2004) Crimean-Congo hemorrhagic fever. Antiviral Res 64:145–160

    PubMed  CAS  Google Scholar 

  59. Wilson ML, Gonzalez J-P, Cornet J-P, Camicas J-L (1991) Transmission of Crimean-Congo haemorrhagic fever virus from experimentally infected sheep to Hyalomma truncatum ticks. Res Virol 142:395–404

    Article  PubMed  CAS  Google Scholar 

  60. Zeller HG, Cornet JP, Camicas JL (1994) Experimental transmission of Crimean-Congo hemorrhagic fever virus by West African wild ground-feeding birds to Hyalomma marginatum rufipes ticks. Am J Trop Med Hyg 50:676–681

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Randolph, S.E., Rogers, D.J. (2007). Ecology of Tick-Borne Disease and the Role of Climate. In: Ergonul, O., Whitehouse, C.A. (eds) Crimean-Congo Hemorrhagic Fever. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6106-6_14

Download citation

Publish with us

Policies and ethics