Skip to main content

Predicting Fate-Related Physicochemical Properties

  • Chapter

The environmental fate of chemical substances is determined by partitioning between environmental compartments, and by transport and degradation processes. In this context, long range transport potential and persistence are important characteristics of the compound behaviour [1-7]. Besides specialized models to address the compound fate in individual environmental compartments, multimedia fate models have become popular in exposure and fate assessment on global and regional scales. A main application of such models is the screening-level prediction of the fate of environmental chemicals under standardized emission scenarios, and more recently the focus has shifted to more detailed process descriptions including time-dependent concentration levels of compounds and consideration of spatial resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mackay D, Di Guardo A, Paterson S, Cowan CE. 1996. Evaluating the environmental fate of a variety of types of chemicals using the EQC model. Environ Toxicol Chem 15:1627-1637.

    CAS  Google Scholar 

  2. Webster E, Mackay D, Wania F. 1998. Evaluating environmental persistence. Environ Toxicol Chem 17:2148-2158.

    CAS  Google Scholar 

  3. Hertwich EG, McKone TE. 2001. Pollutant-specific scale of multimedia models and its implications for the potential dose. Environ Sci Technol35:142-148.

    CAS  Google Scholar 

  4. Mackay D, Hubbarde J, Webster E. 2003. The role of QSARs and fate models in chemical hazard and risk assessment. QSAR Comb Sci22:106-112.

    CAS  Google Scholar 

  5. Cahill TM, Mackay D. 2003. Complexity in multimedia mass balance models: when are simple models adequate and when are more complex models necessary? Environ Toxicol Chem22:1404-1412.

    CAS  Google Scholar 

  6. Wania F, Dugani CB. 2003. Assessing the long-range transport potential of polybrominated diphenyl ethers: a comparison of four multimedia models. Environ Toxicol Chem22:1252-1261.

    CAS  Google Scholar 

  7. Stroebe M, Scheringer M, Hungerbühler K. 2004. Measures of overall persistence and the temporal remote state. Environ Sci Technol21:5665-5637.

    Google Scholar 

  8. Mackay D. 1991. Multimedia Environmental Models. Lewis Publishers, Chelsea, MI.

    Google Scholar 

  9. Kühne R, Breitkopf C, Schüürmann G. 1997. Error propagation in fugacity level-III models in the case of uncertain physicochemical compound properties. Environ Toxicol Chem16:2067-2069.

    Google Scholar 

  10. Breitkopf C, Kühne R, Schüürmann G. 2000. Dependence of multimedia level-III partitioning and residence times of compounds on physicochemical properties and system parameters of water-rich and water-poor environments. Environ Toxicol Chem19:1430-1440.

    CAS  Google Scholar 

  11. MacLeod M, Fraser AJ, Mackay D. 2002. Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ Toxicol Chem 21:700-709.

    CAS  Google Scholar 

  12. Fenner K, Scheringer M, Hungerbühler K. 2004. Prediction of overall persistence and long-range transport potential with multimedia fate models: robustness and sensitivity of results. Environ Pollut128:189-204.

    CAS  Google Scholar 

  13. Cole JG, Mackay D. 2000. Correlating environmental partitioning properties of organic compounds: the three solubility approach. Environ Toxicol Chem19:265-270.

    CAS  Google Scholar 

  14. Schenker U, MacLeod M, Scheringer M, Hungerbühler K. 2005. Improving data quality for environmental fate models: a least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. Environ Sci Technol39:8434-8441.

    CAS  Google Scholar 

  15. Breivik K, Wania F. 2003. Expanding the applicability of multimedia fate models to polar organic chemicals. Environ Sci Technol37:4934-4943.

    CAS  Google Scholar 

  16. Abraham MH. 1993. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev22:73-83.

    CAS  Google Scholar 

  17. Schüürmann G, Ebert R-U, Kühne R. 2006. Prediction of physicochemical properties of organic compounds from 2D molecular structure - Fragment methods vs. LFER models. Chimia60:691-698.

    Google Scholar 

  18. Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J, Mekenyan O. 2005. A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model45:839-849.

    CAS  Google Scholar 

  19. Schüürmann G, Kühne R, Kleint F, Ebert R-U, Rothenbacher C, Herth P. 1997. A software system for automatic chemical property estimation from molecular structure. In: Chen F, Schüürmann G, eds, Quantitative Structure-Activity Relationships in Environmental Sciences - VII.SETAC Press, Pensacola, FL, pp. 93-114.

    Google Scholar 

  20. Organization for Economic Co-operation and Development. The report from the expert group on (quantitative) structure-activity relationships [(Q)SARs] on the principles for the validation of (Q)SARs. OECD, Paris, France.

    Google Scholar 

  21. Todeschini R, Consonni V. 2000. Handbook of Molecular Descriptors. Methods and Principles in Medicinal Chemistry.Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  22. Randic M. 1975. Characterization of molecular branching. J Am Chem Soc97:6609-6615.

    CAS  Google Scholar 

  23. Kier LB, Hall LH. 1976. Molecular Connectivity in Chemistry and Drug Research.Academic Press, New York, NY.

    Google Scholar 

  24. Kier LB, Hall LH. 1990. An electrotopological-state index for atoms in molecules. Pharm Res7:801-807.

    CAS  Google Scholar 

  25. Kier LB, Hall LH. 1999. Molecular Structure Description. Academic Press, San Diego, CA.

    Google Scholar 

  26. Schüürmann G. 2004. Quantum chemical descriptors in structure-activity relationships - calculation, interpretation, and comparison of methods. In: Cronin MTD, Livingstone DJ, eds, Predicting Chemical Toxicity and Fate. CRC Press, Boca Raton, FL, pp. 85-149.

    Google Scholar 

  27. Molecular Networks GmbH. 2006. CORINA 3.4. Molecular Networks GmbH - Computerchemie, Erlangen, Germany.

    Google Scholar 

  28. Mekenyan O, Nikolova N, Schmieder P, Veith G. 2004. COREPA-M: A multi-dimensional formulation of COREPA. QSAR Comb Sci23:5-18.

    CAS  Google Scholar 

  29. Mekenyan O, Pavlov T, Grancharov V, Todorov M, Schmieder P, Veith G. 2005. 2D-3D migration of large chemical inventories with conformational multiplication. Application of the genetic algorithm. J Chem Inf Model 45:283-292.

    CAS  Google Scholar 

  30. Kamlet MJ, Abboud JL, Taft RW. 1981. An examination of linear solvation energy relationships. Prog Phys Org Chem13:485-630.

    CAS  Google Scholar 

  31. Abraham MH, Whiting GS, Doherty RM, Shuely WJ. 1990. Hydrogen bonding. Part 13. A new method for the characterisation of GLC stationary phases — the laffort data set. J Chem Soc Perkin Trans2:1451-1460.

    Google Scholar 

  32. Abraham MH, McGowan JC. 1987. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 23:243-246.

    CAS  Google Scholar 

  33. Hansch C, Fujita T. 1964. r-s-p Analysis. Method for correlation of biological activity and chemical structure. J Am Chem Soc86:1616-1626.

    CAS  Google Scholar 

  34. Leo A, Hansch C, Elkins D. 1971. Partition coefficients and their uses. Chem Rev71:525-616.

    CAS  Google Scholar 

  35. Leo AJ. 1993. Calculating log Poct from structures. Chem Rev93:1281-1306.

    CAS  Google Scholar 

  36. Lyman WJ. 1990. Octanol/water partition coefficient. In: Lyman WJ, Reehl WF, Rosenblatt DH, eds, Handbook of Chemical Property Estimation Methods, 3rd ed. American Chemical Society, Washington, DC, pp. 1-1-1-54.

    Google Scholar 

  37. Leo A. 1990. Medicinal Chemistry and Biological Chemistry, Part IV.Wiley-VCH, Weinheim, Germany, pp. 295-319.

    Google Scholar 

  38. Taylor KR. 1990. Medicinal Chemistry and Biological Chemistry, Part IV.Wiley-VCH, Weinheim, Germany, pp. 241-294.

    Google Scholar 

  39. Leo AJ. 1990. Methods of calculating partition coefficients. In: Hansch C, et al, eds, Comprehensive Medicinal Chemistry, 1st ed. Pergamon Press, Oxford, UK, pp. 295-319.

    Google Scholar 

  40. Organization for Economic Co-operation and 416 Predicting fate-related physicochemical properties Development. 1996. OECD Guideline for the Testing of Chemicals 107: Partition coefficient (n-octanol/water): Shake flask method. OECD Environment Directorate, Paris, France.

    Google Scholar 

  41. Organization for Economic Co-operation and Development. 1989. OECD Guideline for the Testing of Chemicals 117: Partition coefficient (n-octanol/water): High performance liquid chromatography (HPLC) method. OECD Environment Directorate, Paris, France.

    Google Scholar 

  42. Tolls J, Bodo K, de Felip E, Dujardin R, Kim YH, Moeller-Jensen L, Mullee D, Nakajima A, Paschke A, Pawliczek JB, Schneider J, Tadeo JL, Tognucci AC, Webb J, Zwijzen AC. 2003. Slow-stirring method for determining the n-octanol/water partition coefficient (Pow) for highly hydrophobic chemicals: Performance evaluation in a ring test. Environ Toxicol Chem22:1051- 1057.

    CAS  Google Scholar 

  43. Organization for Economic Co-operation and Development. 2006. OECD Guideline for the Testing of Chemicals 123: Partition coefficient (n-octanol/water): Slow-stirring method. OECD Environment Directorate, Paris, France.

    Google Scholar 

  44. Sangster J. 1997. Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry.Wiley, Chichester, UK.

    Google Scholar 

  45. Schüürmann G. 1998. Ecotoxic modes of action of chemical substances. In: Schüürmann G, Markert B, eds, Ecotoxicology. John Wiley and Spektrum Akademischer Verlag, New York, NY, pp. 665-749.

    Google Scholar 

  46. Organization for Economic Co-operation and Development. 2000. OECD Guideline for the Testing of Chemicals 122: Partition coefficient (n-octanol/water): pH-Metric method for ionisable substances (proposal). OECD Environment Directorate, Paris, France.

    Google Scholar 

  47. Slater B, McCormack A, Avdeef A, Comer JEA. 1994. pH-metric log P: 4. Comparison of partition-coefficients determined by HPLC and potentiometric methods to literature values. J Pharm Sci83:1280-1283.

    CAS  Google Scholar 

  48. Karickhoff SW. 1981. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere10:833-846.

    CAS  Google Scholar 

  49. Doucette WJ. 2003. Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals. Environ Toxicol Chem 22:1771-1788.

    CAS  Google Scholar 

  50. Mackay D. 1982. Correlation of bioconcentration factors. Environ Sci Technol16:274-278.

    CAS  Google Scholar 

  51. Connell DW. 1988. Bioaccumulation behavior of persistent organic-chemicals with aquatic organisms. Rev Environ Contam Toxicol102:117-154.

    CAS  Google Scholar 

  52. Connell DW. 1990. Bioaccumulation of Xenobiotic Compounds.CRC Press, Boca Raton, FL.

    Google Scholar 

  53. Barber MC. 2003. A review and comparison of models for predicting dynamic chemical bioconcentration in fish. Environ Toxicol Chem22:1963-1992.

    CAS  Google Scholar 

  54. Van Leeuwen CJ, van der Zandt PTJ, Aldenberg T, Verhaar HJM, Hermens JLM. 1992. Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. 1. Narcotic industrial pollutants. Environ Toxicol Chem11:267-282.

    Google Scholar 

  55. Moore DRJ, Breton RL, MacDonald DB. 2003. A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish. Environ Toxicol Chem22:1799-1809.

    CAS  Google Scholar 

  56. Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA. 1997. Predicting modes of toxicity action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas) Environ Toxicol Chem16:948-967.

    CAS  Google Scholar 

  57. Schüürmann G, Somashekar RK, Kristen U. 1996. Structure-activity relationships for chloro- and nitrophenol toxicity in the pollen tube growth test. Environ Toxicol Chem15:1702-1708.

    Google Scholar 

  58. Sijm DTHM, Schipper M, Opperhuizen A. 1993. Toxicokinetics of halogenated benzenes in fish - lethal body burden as a toxicological end-point. Environ Toxicol Chem12:1117-1127.

    CAS  Google Scholar 

  59. Meylan WM. 2004. KOWWIN 1.67. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  60. Tetko IV, Tanchuk VYu, Kasheva TN, Villa AEP. 2001. Internet software for the calculation of the lipophilicity and aqueous solubility of chemical compounds. J Chem Inform Comput Sci41:246-252.

    CAS  Google Scholar 

  61. Beauman JA, Howard PH. 1996. Physprop database. Syracuse Research Corporation, Syracuse, NY. http:// www.syrres.com/esc/databases.htm.

    Google Scholar 

  62. Advanced Pharma Algorithms Inc. 2006. ADME Boxes 3.5 Build 12. Toronto, ON, Canada.

    Google Scholar 

  63. Marrero J, Gani R. 2002. Group-contribution-based estimation of octanol/water partition coefficient and aqueous solubility. Ind Eng Chem Res41:6623-6633.

    CAS  Google Scholar 

  64. Abraham MH, Chadha HS, Whiting GS, Mitchell RC. 1994. Hydrogen Bonding. 32. An analysis of wateroctanol and water-alkane partitioning and the ⊗ log P parameter of Seiler. J Pharm Sci83:1085-1100.

    CAS  Google Scholar 

  65. Platts JA, Butina D, Abraham MH, Hersey A. 1999. Estimation of molecular linear free energy relation descriptors using a group contribution approach. J Chem Inform Comput Sci39:835-845.

    CAS  Google Scholar 

  66. Daylight Chemical Information Systems, Inc. 1998. CLOGP 4.61. Irvine, CA.

    Google Scholar 

  67. Chou JT, Jurs PC. 1979. Computer-assisted computation References 417 of partition-coefficients from molecular-structures using fragment constants. J Chem Inform Comput Sci19:172- 178.

    CAS  Google Scholar 

  68. Hansch C, Leo AJ. 1979. Substituent Constants for Correlation Analysis in Chemistry and Biology.Wiley, New York, NY.

    Google Scholar 

  69. Lyman WJ, Reehl WF, Rosenblatt DH, eds. 1990. Handbook of Chemical Property Estimation Methods. American Chemical Society, Washington DC.

    Google Scholar 

  70. Pliska V, Testa B. 1996. Lipophilicity in Drug Action and Toxicology.Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  71. Mackay D. 2000. Solubility in water. In: Boethling RS, Mackay D, eds, Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences, 1st ed. CRC Press, Boca Raton, FL, pp. 125- 138.

    Google Scholar 

  72. Leo A. 2000. Octanol/water partition coefficient. In: Boethling RS, Mackay D, eds. CRC Press, Boca Raton, FL, pp. 89-114.

    Google Scholar 

  73. Meylan WM, Howard, PH. 1994. SRC-TR-94-024. Validation of water solubility estimation methods using Log Kow for application in PCGEMS & EPI. Syracuse Research Corporation, NY, USA.

    Google Scholar 

  74. Schüürmann G, Ebert R-U, Kühne R. 2006. Prediction of the sorption of organic compounds into soil from molecular structure. Environ Sci Technol40:7005-7011.

    Google Scholar 

  75. Staudinger J, Roberts PV. 1996. A critical review of Henry’s law constant for environmental applications. Crit Rev Environ Sci Technol26:205-297.

    CAS  Google Scholar 

  76. Sangster J. 2003. The experimental measurement of Henry’s law constant. In: Fogg P, Sangster J, eds, Chemicals in the Atmosphere – Solubility, Sources and Reactivity. Wiley, Chichester, UK, pp. 53-67.

    Google Scholar 

  77. Raal JD, Ramjugernath D. 2005. Measurements of limiting activity coefficients: non-analytical tools. In: Weir RD, de Loos TW, eds, Measurement of the Thermodynamic Properties of Multiple Phases.IUPAC & Elsevier, Amsterdam, The Netherlands, pp. 339-356.

    Google Scholar 

  78. Dohnal V. 2005. Measurements of limiting activity coefficients using analytical tools. In: Weir RD, de Loos TW, eds, Measurement of the Thermodynamic Properties of Multiple Phases.IUPAC & Elsevier, Amsterdam, The Netherlands, pp. 359-377.

    Google Scholar 

  79. Mackay D, Shiu WY, Sutherland RP. 1979. Determination of air-water Henry’s law constants for hydrophobic compounds. Environ Sci Technol13:333-337.

    CAS  Google Scholar 

  80. Hovorka S, Dohnal V. 1997. Determination of air-water partitioning of volatile halogenated hydrocarbons by the inert gas stripping method. J Chem Eng Data42:924- 933.

    CAS  Google Scholar 

  81. Kolb B, Ettre LS. 2006. Static Headspace Analysis – Theory and Practice. Wiley, Hoboken, NJ.

    Google Scholar 

  82. Gosset JM. 1987. Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons. Environ Sci Technol21:202-208.

    Google Scholar 

  83. Kolb B, Welter C, Bichler C. 1992. Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration. Chromatographia34:235-240.

    CAS  Google Scholar 

  84. Ettre LS, Welter C, Kolb B. 1993. Determination of gasliquid partition coefficients by automatic equilibrium headspace-gas chromatography utilizing the phase ratio variation method. Chromatographia35:73-84.

    CAS  Google Scholar 

  85. Robbins G, Wang S, Stuart JD. 1993. Using the static headspace method to determine Henry’s law constants. Anal Chem65:3113-3118.

    CAS  Google Scholar 

  86. Pawliszyn J. 1997. Solid Phase Microextraction – Theory and Practice. Wiley-VCH, New York, NY.

    Google Scholar 

  87. Suntio LR, Shiu WY, Mackay D, Seiber JN, Glotfelty D. 1988. Critical review of Henry’s law constants for pesticides. Rev Environ Contam Toxicol103:1-59.

    CAS  Google Scholar 

  88. Mackay D, Shiu WY, Ma KC, Lee SC. 2006. Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. CRC Press, Boca Raton, FL.

    Google Scholar 

  89. Eastcott L, Shiu WY, Mackay D. 1988. Environmentally relevant physical-chemical properties of hydrocarbons: A review of data and development of simple correlations. Oil Chem Pollut4:191-216.

    CAS  Google Scholar 

  90. Kühne R, Ebert R-U, Schüürmann G. 2005. Prediction of the temperature dependency of Henry’s Law constant from chemical structure. Environ Sci Technol39:6705- 6711.

    Google Scholar 

  91. Dearden JC, Schüürmann G. 2003. Quantitative structure-property relationships for predicting Henry’s law constant from molecular structure. Environ Toxicol Chem22:1755-1770.

    CAS  Google Scholar 

  92. Hine J, Mookerjee PK. 1975. The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J Org Chem40:292-298.

    CAS  Google Scholar 

  93. Meylan WM, Howard PH. 1991. Bond contribution method for estimating Henry’s law constants. Environ Toxicol Chem10:1283-1293.

    CAS  Google Scholar 

  94. Meylan WM. 2000. HENRYWIN 3.1. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  95. Nirmalakhandan NN, Speece RE. 1988. QSAR model for predicting Henry’s constant. Environ Sci Technol 22:1349-1357.

    CAS  Google Scholar 

  96. Nirmalakhandan N, Brennan RA, Speece RE. 1997. Predicting Henry’s Law constant and the effect of temperature on Henry’s Law constant. Wat Res31:1471- 1481.

    CAS  Google Scholar 

  97. Abraham MH, Andonian-Haftvan J, Whiting GS, Leo A, Taft RS. 1994. Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapors in water 418 Predicting fate-related physicochemical properties at 298 K, and a new method for its determination. J Chem Soc Perkin Trans2:1777-1791.

    Google Scholar 

  98. Kile DE, Chiou CT, Zhou HD, Li H, Xu OY. 1995. Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environ Sci Technol 29:1401-1406.

    CAS  Google Scholar 

  99. Chiou CT, Kile DE. 1998. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environ Sci Technol32:338-343.

    CAS  Google Scholar 

  100. Chiou CT. 2002. Partition and Adsorption of Organic Contaminants in Environmental Systems.Wiley, Hoboken, NJ, USA.

    Google Scholar 

  101. Tinsley IJ. 2004. Chemical Concepts in Pollutant Behaviour.John Wiley, New York, NY.

    Google Scholar 

  102. Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM. 2005. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol18:6881-6895.

    Google Scholar 

  103. Burkhard LP. 2000. Estimating dissolved organic carbon partition coefficients for nonionic organic chemicals. Environ Sci Technol34:4663-4668.

    CAS  Google Scholar 

  104. Boethling RS, Mackay D, eds. 2000. Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences.CRC Press, Boca Raton, FL.

    Google Scholar 

  105. Spurlock FC, Biggar JW. 1994. Thermodynamics of organic chemical partition in soils. 1. Development of a general partition model and application to linear isotherms. Environ Sci Technol28:989-995.

    CAS  Google Scholar 

  106. Chiou CT. 1995. Thermodynamics of organic-chemical partition in soils - comment. Environ Sci Technol 29:1421-1422.

    CAS  Google Scholar 

  107. Organization for Economic Co-operation and Development. 2000. OECD Guideline for the Testing of Chemicals 106: Adsorption-desorption using a batch equilibration method. OECD Environment Directorate, Paris, France.

    Google Scholar 

  108. Heringa MB, Hermens JLM. 2003. Measurement of free concentrations using negligible depletion-solid phase microextraction (nd-SPME). Trac-Trends in Analytical Chemistry22:575-587.

    CAS  Google Scholar 

  109. Hawthorne SB, Grabanski CB, Miller DJ, Kreitinger JP. 2005. Solid-phase microextraction measurement of parent and alkyl polycyclic aromatic hydrocarbons in milliliter sediment pore water samples and determination of K-DOC values. Environ Sci Technol39:2795-2803.

    CAS  Google Scholar 

  110. MacIntyre WG, Stauffer TB, Antworth CP. 1991. A comparison of sorption coefficients determined by batch, column, and box methods on a low organic-carbon aquifer material. Ground Water29:908-913.

    CAS  Google Scholar 

  111. Organization for Economic Co-operation and Development. 2001. OECD Guideline for the Testing of Chemicals 121: Estimation of the adsorption coefficient (Koc) on soil and on sewage sludge using HPLC. OECD Environment Directorate, Paris, France.

    Google Scholar 

  112. Delle Site A. 2001. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data30:187-439.

    CAS  Google Scholar 

  113. Vermeire T, Rikken M, Attias L, Boccardi P, Boeije G, De Bruijn J, Brooke D, Comber M, Dolan B, Fischer S, Heinemeyer G, Koch V, Lijzen J, Müller B, Murray- Smith R, Tadeo J. 2005. European Union system for the evaluation of substances: the second version. Chemosphere59:473-485.

    Google Scholar 

  114. Sabljic A, Güsten H, Verhaar H, Hermens J. 1995. QSAR modelling of soil sorption. Improvements and systematics of log Koc vs. log Kow correlations. Chemosphere 31:4489-4514.

    CAS  Google Scholar 

  115. Sabljic A, Güsten H, Verhaar H, Hermens J. 1996. QSAR modelling of soil sorption. Improvements and systematics of Koc vs. log Kow correlations (Vol 31, pp. 4489, 1995). Chemosphere33:2577.

    CAS  Google Scholar 

  116. Meylan WM. 2000. PCKOCWIN 1.66. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  117. Meylan WM, Howard PH, Boethling RS. 1992. Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environ Sci Technol 26:1560-1567.

    CAS  Google Scholar 

  118. Estrada E. 1995. Edge adjacency relationships and a novel topological index related to molecular volume. J Chem Inform Comput Sci35:31-33.

    CAS  Google Scholar 

  119. Kier LB, Hall LH. 2000. Intermolecular accessibility: the meaning of molecular connectivity. J Chem Inform Comput Sci40:792-795.

    CAS  Google Scholar 

  120. Huuskonen J. 2003. Prediction of soil sorption coefficient of a diverse set of organic chemicals from molecular structure. J Chem Inform Comput Sci43:1457-1462.

    CAS  Google Scholar 

  121. Poole SK, Poole CF. 1999. Chromatographic models for the sorption of neutral organic compounds by soil from water and air. J Chromatogr A845:381-400.

    CAS  Google Scholar 

  122. Sabljic A. 1987. On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ Sci Technol21:358-366.

    Google Scholar 

  123. Nguyen TH, Goss KU, Ball WP. 2005. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments. Environ Sci Technol39:913-924.

    CAS  Google Scholar 

  124. Lohninger H. 1994. Estimation of soil partition References 419 coefficients of pesticides from their chemical structure. Chemosphere29:1611-1626.

    CAS  Google Scholar 

  125. Howard PH. 1995. Chemfate database 1.3. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  126. Baker JR, Mihelcic JR, Sabljic A. 2001. Reliable QSAR for estimating Koc for persistent organic pollutants: correlation with molecular connectivity indices. Chemosphere45:213-221.

    CAS  Google Scholar 

  127. Tao S, Piao H, Dawson R, Lu X, Hu H. 1999. Estimation of organic carbon normalized sorption coefficient (Koc) for soils using the fragment constant method. Environ Sci Technol33:2719-2725.

    CAS  Google Scholar 

  128. Organization for Economic Co-operation and Development. 1995. OECD Guideline for Testing of Chemicals No. 104: Vapour pressure. OECD Environment Directorate, Paris, France.

    Google Scholar 

  129. Verevkin SP. 2005. Phase changes in pure component systems: liquids and gases. In: Weir RD, de Loos TW, eds, Measurement of the Thermodynamic Properties of Multiple Phases.IUPAC & Elsevier, Amsterdam, The Netherlands, pp. 5-26.

    Google Scholar 

  130. Koutek B, Cvacka J, Streinz L, Vrkocova P, Doubsky J, Simonova H, Feltl L, Svoboda V. 2001. Comparison of methods employing gas chromatography retention data to determine vapour pressures at 298 K. J Chromatogr A 923:137-152.

    CAS  Google Scholar 

  131. Letcher TM, Naicker PK. 2004. Determination of vapor pressures using gas chromatography. J Chromatogr A 1037:107-114.

    CAS  Google Scholar 

  132. Paschke A, Schröter U, Schüürmann G. 2005. Indirect determination of low vapour pressures using solid-phase microextraction - application to tetrachlorobenzenes and tetrachlorobenzyltoluenes. J Chromatogr A1072:93-97.

    CAS  Google Scholar 

  133. Dearden JC. 2003. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point. Environ Toxicol Chem 22:1696-1709.

    CAS  Google Scholar 

  134. Prausnitz JM, Lichtenthaler RN, de Azevedo EG. 1986. Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice Hall PTR, Englewood Cliffs, NJ.

    Google Scholar 

  135. Walden P. 1908. Über Schmelzwärme, spezifische Kohäsion und Molekulargrööe bei der Schmelztemperatur. Zeitschrift für Elektrochemie14:713-728. [in German]

    CAS  Google Scholar 

  136. Antoine C. 1888. Tensions de vapours: nouvelle relation entre les tensions et les temperatures. Compt Rend 107:681-684. [in French]

    Google Scholar 

  137. Grain CF. 1990. Vapor pressure. In: Lyman WJ, Reehl WF, Rosenblatt DH, eds, Handbook of Chemical Property Estimation Methods,3rd ed. American Chemical Society, Washington DC, USA, pp. 14-1-14-20.

    Google Scholar 

  138. Fishtine SH. 1963. Reliable latent heats of vaporization. Ind Eng Chem55:47-60.

    CAS  Google Scholar 

  139. Constantinou L, Gani R. 1994. A new group contribution method for the estimation of properties of pure compounds. AIChe Journal40:1697-1710.

    CAS  Google Scholar 

  140. Stein SE, Brown RL. 1994. Estimation of normal boiling points from group contribution. J Chem Inform Comput Sci34:581-587.

    CAS  Google Scholar 

  141. Joback KG, Reid RC. 1987. Estimation of purecomponent properties from group-contributions. Chem Eng Commun57:233-243.

    CAS  Google Scholar 

  142. Marrero J, Gani R. 2001. Group-contribution based estimation of pure component properties. Fluid Phase Equilibria183-184:183-208.

    Google Scholar 

  143. Sage ML, Sage GW. 2000. Vapor pressure. In: Boethling RS, Mackay D, eds, Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences,1st ed. CRC Press, Boca Raton, FL pp. 53-65.

    Google Scholar 

  144. Mackay D, Bobra A, Chan DW, Shiu WY. 1982. Vapor pressure correlations for low-volatility environmental chemicals. Environ Sci Technol16:645-649.

    CAS  Google Scholar 

  145. Mishra DS, Yalkowsky SH. 1991. Estimation of vapor pressure of some organic compounds. Ind Eng Chem Res 30:1609-1612.

    CAS  Google Scholar 

  146. Myrdal PB, Yalkowsky SH. 1997. Estimating pure component vapor pressures of complex organic molecules. Ind Eng Chem Res36:2494-2499.

    CAS  Google Scholar 

  147. Sepassi K, Myrdal PB, Yalkowsky SH. 2006. Estimating pure-component vapor pressures of complex organic molecules: Part II. Ind Eng Chem Res45:8744-8747.

    CAS  Google Scholar 

  148. Meylan, WM. 2000. MPBPWIN 1.41. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  149. Meylan, WM. 2000. EPIWIN 3.12. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  150. Advanced Chemistry Development Inc. 2001. ACD/PhysChem Batch 5.13. Advanced Chemistry Development Inc., Toronto, ON, Canada.

    Google Scholar 

  151. Kühne R, Ebert R-U, Schüürmann G. 1997. Estimation of vapour pressures for hydrocarbons and halogenated hydrocarbons from chemical structure by a neural network. Chemosphere34:671-686.

    Google Scholar 

  152. Hawker DW, Connell DW. 1985. Relationship between partition coefficient, uptake rate constant, clearance rate constant and time to equilibrium for bioaccumulation. Chemosphere14:1205-1219.

    CAS  Google Scholar 

  153. De Wolf W, De Bruijn JHM, Seinen W, Hermens JLM. 1992. Influence of biotransformation on the relationship between bioconcentration factors and octanol water partition-coefficients. Environ Sci Technol26:1197- 1201.

    Google Scholar 

  154. Dimitrov S, Dimitrova N, Parkerton T, Comber M, Bonnel M, Mekenyan O. 2005. Base-line model for identifying the bioaccumulation potential of chemicals. SAR QSAR Environ Res16:531-554.

    CAS  Google Scholar 

  155. Organization for Economic Co-operation and Development. 1996. OECD Guideline for Testing of Chemicals No. 305: Bioconcentration: Flow-through fish test. OECD Environment Directorate, Paris, France.

    Google Scholar 

  156. Arnot JA, Gobas FAPC. 2006. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ Rev14:257-297.

    Google Scholar 

  157. Neely WB, Branson DR, Blau GE. 1974. Partition coefficient to measure bioconcentration potential of organic chemicals to fish. Environ Sci Technol8:1113- 1115.

    CAS  Google Scholar 

  158. Spacie A, Hamelink JL. 1982. Alternative models for describing the bioconcentration of organics in fish. Environ Toxicol Chem1:309-320.

    CAS  Google Scholar 

  159. Gobas FAPC, Mackay D. 1987. Dynamics of hydrophobic organic chemical bioconcentration in fish. Environ Toxicol Chem6:495-504.

    CAS  Google Scholar 

  160. Hawker DW, Connell DW. 1988. Octanol-water partition coefficient of PCB congeners. Environ Sci Technol 22:382-387.

    CAS  Google Scholar 

  161. Clark KE, Gobas FAPC, Mackay D. 1990. Model of organic-chemical uptake and clearance by fish from food and water. Environ Sci Technol24:1203-1213.

    CAS  Google Scholar 

  162. Mackay D, Fraser A. 2000. Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut110:375-391.

    CAS  Google Scholar 

  163. Baron MG. 1990. Will water-borne organic chemicals accumulate in aquatic animals? Environ Sci Technol 1612-1618.

    Google Scholar 

  164. Gobas FAPC, Morrison HA. 2000. Bioconcentration and biomagnification in the aquatic environment. In: Boethling RS, Mackay D, eds, Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences,1st ed. CRC Press, Boca Raton, FL, pp. 189-231.

    Google Scholar 

  165. Schüürmann G, Klein W. 1988. Advances in bioconcentration prediction. Chemosphere17:1551- 1574.

    Google Scholar 

  166. Nendza M. 1991. QSARs of bioconcentration: validity assessment of log Pow/log BCF correlations. In: Nagel R, Loskill R, eds, Bioaccumulation in Aquatic Systems. Wiley-VCH, Weinheim, Germany, pp. 43-66.

    Google Scholar 

  167. Connell DW. 1991. Extrapolating Test Results on Bioaccumulation between Organism Groups. In: Nagel R, Loskill R, eds, Bioaccumulation in Aquatic Systems. Wiley-VCH, Weinheim, Germany, pp. 133-149.

    Google Scholar 

  168. Meylan WM, Howard PH, Boethling RS, Aronson D, Printup H, Gouche S. 1999. Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environ Toxicol Chem 18:664-672.

    CAS  Google Scholar 

  169. Zitko V, Carson WG. 1977. Uptake and excretion of chlorinated diphenyl ethers and brominated toluenes by fish. Chemosphere6:293-301.

    CAS  Google Scholar 

  170. Sugiura K, Ito N, Matsumoto N, Mihara Y, Murata K, Tsukakoshi Y, Goto M. 1978. Accumulation of polychlorinated biphenyls and polybrominated biphenyls in fish - limitation of correlation between partitioncoefficients and accumulation factors. Chemosphere 7:731-736.

    CAS  Google Scholar 

  171. Tulp MTM, Hutzinger O. 1978. Thoughts on aqueous solubilities and partition-coefficients of PCB, and mathematical correlation between bioaccumulation and physicochemical properties. Chemosphere7:849-860.

    CAS  Google Scholar 

  172. Könemann H, Van Leeuwen K. 1980. Toxicokinetics in fish: accumulation and elimination of six chlorobenzenes by guppies. Chemosphere9:3-19.

    Google Scholar 

  173. Bruggeman WA, Opperhuizen A, Wijbenga A, Hutzinger O. 1984. Bioaccumulation of super-lipophilic chemicals in fish. Toxicol Environ Chem7:173-189.

    CAS  Google Scholar 

  174. Zitko V, Hutzinger O. 1976. Uptake of chlorobiphenyls and bromobiphenyls, hexachloromobenzene and hexabromobenzene by fish. Bull Environ Contam Toxicol 16:665-673.

    CAS  Google Scholar 

  175. Opperhuizen A, Van der Velde EW, Gobas FAPC, Liem DAK, van der Steen JMD. 1985. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere14:1871-1896.

    CAS  Google Scholar 

  176. Hawker DW, Connell DW. 1986. Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotox Environ Saf11:184-197.

    CAS  Google Scholar 

  177. Connell DW, Hawker DW. 1988. Use of polynomials to describe the bioconcentration of hydrophobic chemicals by fish. Ecotox Environ Saf16:242-257.

    CAS  Google Scholar 

  178. Sijm DTHM, Opperhuizen A. 1988. Biotransformation, bioaccumulation and lethality of 2,8-dichlorodibenzo-pdioxin: a proposal to explain the biotic fate and toxicity of PCCD’s and PCDF’s. Chemosphere17:83-99.

    CAS  Google Scholar 

  179. Opperhuizen A, Sijm DTHM. 1990. Bioaccumulation and biotransformation of polychlorinated dibenzo-paradioxins and dibenzofurans in fish. Environ Toxicol Chem 9:175-186.

    Google Scholar 

  180. Gobas FAPC, Muir DCG, Mackay D. 1988. Dynamics of dietary bioaccumulation and faecal elimination of hydrophobic organic chemicals in fish. Chemosphere 17:943-962.

    CAS  Google Scholar 

  181. Gobas FAPC, Clark KE, Shiu WY, Mackay D. 1989. Bioconcentration of polybrominated benzenes and biphenyls and related superhydrophobic chemicals in fish - Role of bioavailability and elimination into the feces. Environ Toxicol Chem8:231-245. References 421

    CAS  Google Scholar 

  182. Banerjee S, Baughman GL. 1991. Bioconcentration factors and lipid solubility. Environ Sci Technol25:536- 539.

    CAS  Google Scholar 

  183. Chessells M, Hawker DW, Connell DW. 1992. Influence of solubility in lipid on bioconcentration of hydrophobic compounds. Ecotox Environ Saf23:260-273.

    CAS  Google Scholar 

  184. McCarthy JF. 1983. Role of particulate organic-matter in decreasing accumulation of polynuclear aromatichydrocarbons by daphnia-magna. Arch Environ Contam Toxicol12:559-568.

    CAS  Google Scholar 

  185. McCarthy JF, Jimenez BD. 1985. Reduction in bioavailability to bluegills of polycyclic aromatichydrocarbons bound to dissolved humic material. Environ Toxicol Chem4:511-521.

    CAS  Google Scholar 

  186. Black MC, McCarthy JF. 1984. Dissolved organic macromolecules reduce the uptake of hydrophobic organic contaminants by the gills of rainbow trout (Salmo gairdneri). Environ Toxicol Chem7:593-600.

    Google Scholar 

  187. Servos MR, Muir DCG, Webster GRB. 1989. The effect of dissolved organic-matter on the bioavailability of polychlorinated dibenzo-para-dioxins. Aquat Toxicol 14:169-184.

    CAS  Google Scholar 

  188. Schrap SM, Opperhuizen A. 1990. Relationship between bioavailability and hydrophobicity - Reduction of the uptake of organic-chemicals by fish due to the sorption of particles. Environ Toxicol Chem9:715-724.

    CAS  Google Scholar 

  189. McKone TE, Hall D, Kastenberg WE. 1997. CalTOX 2.3. University of California, Berkeley, CA.

    Google Scholar 

  190. Veith GD, de Foe DL, Bergstaedt DV. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Board Can36:1040-1048.

    CAS  Google Scholar 

  191. European Commission. 1996. Technical Guidance Document in support of the Commission Regulation (EC) 1488/94 on risk assessment for existing chemicals, Part III. Luxemburg, Belgium. Office for Official Publications of the European Communities. Luxembourg.

    Google Scholar 

  192. Bintein S, Devillers J, Karcher W. 1993. Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient. SAR QSAR Environ Res1:29-39.

    CAS  Google Scholar 

  193. Kubinyi H. 1976. Quantitative structure-activityrelationships .4. Nonlinear dependence of biologicalactivity on hydrophobic character - new model. Arzneimittel-Forschung/Drug Research26:1991-1997.

    CAS  Google Scholar 

  194. Kubinyi H. 1979. Non-linear dependence of biologicalactivity on hydrophobic character - bilinear model. Farmaco-Edizione Scientifica34:248-276.

    CAS  Google Scholar 

  195. Kubinyi H. 1979. Lipophilicity and drug activity. Prog Drug Res 23:97-198.

    CAS  Google Scholar 

  196. Dimitrov S, Breton R, MacDonald D, Walker JD, Mekenyan O. 2002. Quantitative prediction of biodegradability, metabolite distribution and toxicity of stable metabolites. SAR QSAR Environ Res13:445-455.

    CAS  Google Scholar 

  197. Meylan, WM. 2000. BCFWIN 2.15. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  198. Dimitrov SD, Dimitrova NC, Walker JD, Veith GD, Mekenyan OG. 2003. Bioconcentration potential predictions based on molecular attributes - an early warning approach for chemicals found in humans, birds, fish and wildlife. QSAR Comb Sci22:58-68.

    CAS  Google Scholar 

  199. Leo A, Hansch C. 1971. Linear free-energy relationships between partitioning solvent systems. J Org Chem 36:1539-1544.

    CAS  Google Scholar 

  200. Kishi H, Hashimoto Y. 1989. Evaluation of the procedures for the measurement of water solubility and normal-octanol water partition-coefficient of chemicals results of a ring test in Japan. Chemosphere18:1749- 1759.

    CAS  Google Scholar 

  201. Organization for Economic Co-operation and Development. 1995. OECD Guideline for Testing of Chemicals No. 105: Water solubility. OECD Environment Directorate, Paris, France.

    Google Scholar 

  202. Roberts GF, Oliver BG. 1997. The preparation and validation of generator column for highly hydrophobic materials. In: Clement RE, Keith LH, Siu KWM, eds, Reference Materials for Environmental Analysis.CRCLewis, Boca Raton, FL, pp. 113-127.

    Google Scholar 

  203. Dohanyosova P, Dohnal V, Fenclova D. 2003. Temperature dependence of aqueous solubility of anthracenes: accurate determination by a new generator column apparatus. Fluid Phase Equilibria214:151-167.

    CAS  Google Scholar 

  204. Arbuckle WB. 1983. Estimating activity coefficients for use in calculating environmental parameters. Environ Sci Technol17:537-542.

    CAS  Google Scholar 

  205. Banerjee S. 1985. Calculation of water solubility of organic compounds with UNIFAC-derived activity coefficients. Environ Sci Technol19:369-370.

    CAS  Google Scholar 

  206. Arbuckle WB. 1986. Using UNIFAC to calculate aqueous solubility. Environ Sci Technol20:1060-1064.

    CAS  Google Scholar 

  207. Chen F, Holten-Andersen J, Tyle H. 1993. New development of the UNIFAC model for environmental applications. Chemosphere26:1325-1354.

    CAS  Google Scholar 

  208. Poling BE, Prausnitz JM, O’Connell JP. 2000. The Properties of Gases and Liquids.McGraw-Hill Book Company, New York, NY.

    Google Scholar 

  209. Hansch C, Quinlan JE, Lawrence GL. 1968. The linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J Org Chem 33:347-350.

    CAS  Google Scholar 

  210. Yalkowsky SH, Valvani SC. 1980. Solubility and partitioning I: Solubility of nonelectrolytes in water. J Pharm Sci69:912-922.

    CAS  Google Scholar 

  211. Yalkowsky SH, Banerjee S. 1992. Aqueous Solubility, 422 Predicting fate-related physicochemical properties Methods of Estimation for Organic Compounds.Marcel Dekker, New York, NY.

    Google Scholar 

  212. Jain N, Yalkowsky SH. 2001. Estimation of the aqueous solubility I: Application to organic nonelectrolytes. J Pharm Sci90:234-252.

    CAS  Google Scholar 

  213. Ran Y, Yalkowsky SH. 2001. Prediction of drug solubility by the general solubility equation (GSE). J Chem Inform Comput Sci41:354-357.

    CAS  Google Scholar 

  214. Ran Y, Jain N, Yalkowsky SH. 2001. Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE). J Chem Inform Comput Sci 41:1208-1217.

    CAS  Google Scholar 

  215. Taskinen J. 2000. Prediction of aqueous solubility in drug design. Curr Opin Drug Discov Develop 3:102-107.

    CAS  Google Scholar 

  216. Dearden JC. 2006. In silicoprediction of aqueous solubility. Expert Opin Drug Discov1:31-52.

    CAS  Google Scholar 

  217. Delaney JS. 2005. Predicting aqueous solubility from structure. Drug Discovery Today10:289-295.

    CAS  Google Scholar 

  218. Tiegs D, Gmehling J, Rasmussen P, Fredenslund A. 1987. Vapor-liquid equilibria by UNIFAC group contribution. 4. Revision and extension. Ind Eng Chem Process Des Dev26:159-161.

    CAS  Google Scholar 

  219. Meylan WM, Howard PH, Boethling RS. 1996. Improved method for estimating water solubility from octanol/ water partition coefficient. Environ Toxicol Chem15:100- 106.

    CAS  Google Scholar 

  220. Delaney JS. 2004. ESOL: Estimating aqueous solubility directly from molecular structure. J Chem Inform Comput Sci44:1000-1005.

    CAS  Google Scholar 

  221. Myrdal PB, Ward GH, Dannenfelser RM, Mishra DS, Yalkowsky SH. 1992. AQUAFAC 1: Aqueous function of group activity coefficients; application to hydrocarbons. Chemosphere24:1047-1061.

    CAS  Google Scholar 

  222. Myrdal PB, Ward GH, Simamora P, Yalkowsky SH. 1993. AQUAFAC: Aqueous functional group activity coefficients. SAR QSAR Environ Res1:53-61.

    CAS  Google Scholar 

  223. Myrdal PB, Manka AM, Yalkowsky SH. 1995. AQUAFAC 3: Aqueous functional group activity coefficients; application to the estimation of aqueous solubility. Chemosphere30:1619-1637.

    CAS  Google Scholar 

  224. Lee YC, Myrdal PB, Yalkowsky SH. 1996. Aqueous functional group activity coefficients (AQUAFAC) 4: Applications to complex organic compounds. Chemosphere33:2129-2144.

    CAS  Google Scholar 

  225. Pinsuwan S, Myrdal PB, Yalkowsky SH. 1997. AQUAFAC 5: aqueous functional group activity coefficients; application to alcohols and acids. Chemosphere35:2503-2513.

    CAS  Google Scholar 

  226. Meylan WM. 2002. WATERNT 1.01. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  227. Tetko IV, Tanchuk VYu, Kasheva TN, Villa AEP. 2001. Estimation of aqueous solubility of chemical compounds using E-state indices. J Chem Inform Comput Sci 41:1488-1493.

    CAS  Google Scholar 

  228. Taft RW, Abraham MH, Dougherty RM, Kamlet MJ. 1985. The molecular properties governing solubilities on nonelectrolytes in water. Nature313:384-386.

    CAS  Google Scholar 

  229. Kamlet MJ, Doherty RM, Abraham MH, Carr PW, Doherty RF, Taft RW. 1987. Linear solvation energy relationships. 41. Important differences between aqueous solubility relationships for aliphatic and aromatic solutes. J Phys Chem91:1996-2004.

    CAS  Google Scholar 

  230. Yalkowsky SH, Pinal R, Banerjee S. 1988. Water solubility: A critique of the solvatochromic approach. J Pharm Sci77:74-77.

    CAS  Google Scholar 

  231. Abraham MH, Le J. 1999. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J Pharm Sci88:868-880.

    CAS  Google Scholar 

  232. Kühne R, Ebert R-U, Schüürmann G. 2006. Model selection based on structural similarity – method description and application to water solubility prediction. J Chem Inf Model46:636-641.

    Google Scholar 

  233. Kühne R, Ebert R-U, Kleint F, Schmidt G, Schüürmann G. 1995. Group contribution methods to estimate water solubility of organic chemicals. Chemosphere30:2061- 2077.

    Google Scholar 

  234. Huuskonen J. 2000. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem Inform Comput Sci40:773-777.

    CAS  Google Scholar 

  235. Atkinson R. 2000. Atmospheric oxidation. In: Boethling RS, Mackay D, eds, Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences.CRC Press, Boca Raton, FL, pp. 335-354.

    Google Scholar 

  236. Larson RA, Weber EJ. 1994. Reaction Mechanism in Environmental Organic Chemistry.CRC Press, Boca Raton, FL.

    Google Scholar 

  237. Atkinson R, Carter WPL. 1984. Kinetics and mechanisms of the gas-phase reactions of ozone with organiccompounds under atmospheric conditions. Chem Rev 84:437-470.

    Google Scholar 

  238. Atkinson R. 1994. Gas-phase tropospheric chemistry of organic-compounds. J Phys Chem Ref Data Monogr2:1- 216.

    CAS  Google Scholar 

  239. Atkinson R. 1991. Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organiccompounds. J Phys Chem Ref Data20:459-507.

    CAS  Google Scholar 

  240. Sabljic A, Peijnenburg W. 2001. Modeling lifetime and degradability of organic compounds in air, soil, and water systems - (IUPAC Technical Report). Pure & Appl Chem 73:1331-1348.

    CAS  Google Scholar 

  241. Meylan WM, Howard PH. 2003. A review of quantitative structure-activity relationship methods for the prediction References 423 of atmospheric oxidation of organic chemicals. Environ Toxicol Chem22:1724-1732.

    CAS  Google Scholar 

  242. Nendza M. 2004. Prediction of persistence. In: Cronin MTD, Livingstone DJ, eds, Predicting chemical toxicity and fate.CRC Press, Boca Raton, FL, pp. 315-331.

    Google Scholar 

  243. Nendza M. 1998. Structure-Activity Relationships in Environmental Sciences.Chapman & Hall, London, UK.

    Google Scholar 

  244. Atkinson R. 1986. Kinetics and mechanisms of the gasphase reactions of the hydroxyl radical with organiccompounds under atmospheric conditions. Chem Rev 86:69-201.

    CAS  Google Scholar 

  245. Atkinson R. 1987. A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic-compounds. International Journal of Chemical Kinetics19:799-828.

    CAS  Google Scholar 

  246. Atkinson R. 1988. Estimation of gas-phase hydroxyl radical rate constants for organic-chemicals. Environ Toxicol Chem7:435-442.

    CAS  Google Scholar 

  247. Kwok ESC, Atkinson R. 1995. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos Environ29:1685-1695.

    CAS  Google Scholar 

  248. Kwok ESC, Aschmann SM, Atkinson R. 1996. Rate constants for the gas-phase reactions of the OH radical with selected carbamates and lactates. Environ Sci Technol30:329-334.

    CAS  Google Scholar 

  249. Meylan WM. 2000. AOPWIN 1.91. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  250. European Commission. 2003. Technical Guidance Document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. European Commission, Joint Research Centre, Ispra, Italy.

    Google Scholar 

  251. Güsten H, Klasinc L, Dubravko M. 1984. Prediction of the abiotic degradability of organic-compounds in the troposphere. J Atmos Chem2:83-93.

    Google Scholar 

  252. Müller M, Klein W. 1991. Estimating atmospheric degradation processes by SARs. Sci Total Environ 109:261-273.

    Google Scholar 

  253. Organization for Economic Co-operation and Development. 1993. Application of structure-activity relationships to the estimation of properties important in exposure assessment. OECD Environment Monograph No. 67. OECD, Paris, France.

    Google Scholar 

  254. Klamt A. 1993. Estimation of gas-phase hydroxyl radical rate constants of organic compounds from molecular orbital calculations. Chemosphere26:1273-1289.

    CAS  Google Scholar 

  255. Klamt A. 1996. Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere32:717- 726.

    CAS  Google Scholar 

  256. Wolfe NL, Jeffers PM. 2000. Hydrolysis. In: Boethling RS, Mackay D, eds, Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences.CRC Press, Boca Raton, FL, pp. 311-334.

    Google Scholar 

  257. Mabey W, Mill T. 1978. Critical review of hydrolysis of organic compounds in water under environmental conditions. J Phys Chem Ref Data7:383-415.

    CAS  Google Scholar 

  258. Harris JC. 1990. Rate of hydrolysis. In: Lyman WJ, Reehl WF, Rosenblatt DH, eds, Handbook of Chemical Property Estimation Methods,3rd ed. American Chemical Society, Washington, DC, pp. 7-1-7-48.

    Google Scholar 

  259. Peijnenburg WJGM, Dobbs AJ, Malz FR, Waldman M, Wolfe NL, Solomon KR, Tetlow JA, Dolejs P, Pitter P, Ewald M, Dobrevsky ID, Trobisch KH, Dobolyi E, Khan MMT, Stevenson CD, Boybay M. 1991. The use of quantitative structure-activity-relationships for predicting rates of environmental hydrolysis processes. Pure & Appl Chem63:1667-1676.

    Google Scholar 

  260. Karickhoff SW, Mcdaniel VK, Melton C, Vellino AN, Nute DE, Carreira LA. 1991. Predicting chemicalreactivity by computer. Environ Toxicol Chem10:1405- 1416.

    CAS  Google Scholar 

  261. Hilal SH, Karickhoff SW, Carreira LA, Shrestha BP. 2003. Estimation of carboxylic acid ester hydrolysis rate constants. QSAR Comb Sci22:917-925.

    Google Scholar 

  262. Whiteside TS, Hilal SH, Carreira LA. 2006. Estimation of phosphate ester hydrolysis rate constants. I. Alkaline hydrolysis. QSAR Comb Sci25:123-133.

    CAS  Google Scholar 

  263. Mill T. 1993. Environmental chemistry. In: Suter GW, II, ed, Ecological Risk Assessment.Lewis Publishers, Chelsea, MI, pp. 91-127.

    Google Scholar 

  264. Meylan WM. 2004. HYDROWIN 1.67. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  265. Mill T, Haag W, Penwell P, Pettit T, Johnson H. Environmental fate and exposure studies. Development of a PC-SAR for hydrolysis: esters, alkyl halides and epoxides. SRI Project 3247. Summary report: Tasks 32 and 50. SRI International, Menlo Park, CA.

    Google Scholar 

  266. Hilal S, Karickhoff S, Carreira L. 1995. A rigorous test for SPARC’s chemical reactivity models: estimation of more than 4300 ionization pKas. Quant Struct -Act Relat 14:348-355.

    CAS  Google Scholar 

  267. Kollig HP, Ellington JJ, Karickhoff SW, Kitchens BE, Kollig HP, Long JM, Weber EJ, Wolfe NL. Environmental fate constants for organic chemicals under consideration for EPA’s hazardous waste identification projects. EPA/600/R-93/132. US Environmental Protection 424 Predicting fate-related physicochemical properties Agency, Washington, DC.

    Google Scholar 

  268. Crosby DG. 1998. Environmental Toxicology and Chemistry.Oxford University Press, New York, NY.

    Google Scholar 

  269. Manahan SE. 1990. Environmental Chemistry. Lewis Publishers, Chelsea, MI, USA.

    Google Scholar 

  270. Alexander M. 1998. Biodegradation and Bioremediation. Academic Press, San Diego, CA.

    Google Scholar 

  271. Howard P.H. 2000. Biodegradation. In: Boethling RS, Mackay D, eds, Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences.CRC Press, Boca Raton, FL, pp. 281-310.

    Google Scholar 

  272. Pitter P, Chudoba J. 1990. Biodegradability of Organic Substances in the Aquatic Environment.CRC Press, Boca Raton, FL.

    Google Scholar 

  273. Syracuse Research Corporation. BIODEG. Syracuse, NY. http://www.syrres.com/esc/biodeg.htm.

    Google Scholar 

  274. Tunkel J, Howard PH, Boethling RS, Stiteler W, Loonen H. 2000. Predicting ready biodegradability in the Japanese Ministry of International Trade and Industry test. Environ Toxicol Chem19:2478-2485.

    CAS  Google Scholar 

  275. Organization for Economic Co-operation and Development. 1994. OECD Guideline for Testing of Chemicals No. 301: Ready biodegradability. OECD Environment Directorate, Paris, France.

    Google Scholar 

  276. Boethling RS. 1993. Biodegradation of xenobiotic compounds. In: Corn M, ed, Handbook of Hazardous Materials.Academic Press, New York, NY, pp. 55-67.

    Google Scholar 

  277. Cowan CE, Federle TW, Larson RJ, Feijtel T. 1996. Impact of biodegradation test methods on the development and applicability of biodegradation QSARs. SAR QSAR Environ Res5:37-49.

    CAS  Google Scholar 

  278. Jaworska JS, Boethling RS, Howard PH. 2003. Recent developments in broadly applicable structurebiodegradability relationships. Environ Toxicol Chem 22:1710-1723.

    CAS  Google Scholar 

  279. Govers HAJ, Parsons JR, Krop HB, Cheung CL. Thermodynamic descriptors for (bio-)degradation. Proceedings of the workshop ‘‘Quantitative structure activity relationships for biodegradation’’. Report No. 719101021. National Institute of Public Health and Environmental Protection, Belgirate, Italy.

    Google Scholar 

  280. Boethling RS, Lynch DG, Thom GC. 2003. Predicting ready biodegradability of premanufacture notice chemicals. Environ Toxicol Chem22:837-844.

    CAS  Google Scholar 

  281. Boethling RS, Lynch DG, Jaworska JS, Tunkel JL, Thom GC, Webb S. 2004. Using BIOWIN\texttrademark , bayes, and batteries to predict ready biodegradability. Environ Toxicol Chem23:911-920.

    CAS  Google Scholar 

  282. Posthumus R, Traas TP, Peijnenburg WJGM, Hulzebos EM. 2005. External validation of EPIWIN biodegradation models. SAR QSAR Environ Res16:135-148.

    CAS  Google Scholar 

  283. Rorije E, Loonen H, Müller M, Klopman G, Peijnenburg WJGM. 1999. Evaluation and application of models for the prediction of ready biodegradability in the MITI-I test. Chemosphere38:1409-1417.

    CAS  Google Scholar 

  284. Meylan WM. 2000. BIOWIN 4.01. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  285. Howard PH, Hueber AE, Boethling RS. 1987. Biodegradation data evaluation for structure/ biodegradability relations. Environ Sci Technol6:1-10.

    CAS  Google Scholar 

  286. Howard PH, Boethling RS, Stiteler WM, Meylan WM, Hueber AE, Beauman JA, Larosche ME. 1992. Predictive model for aerobic biodegradability developed from a file of evaluated biodegradation data. Environ Toxicol Chem 11:593-603.

    CAS  Google Scholar 

  287. Boethling RS, Howard PH, Meylan WM, Stiteler WM, Beauman JA, Tirado NF. 1994. Group contribution method for predicting probability and rate of aerobic biodegradation. Environ Sci Technol94:459-465.

    Google Scholar 

  288. Langenberg JH, Peijnenburg W, Rorije E. 1996. On the usefulness and reliability of existing QSBRs for risk assessment and priority setting. SAR QSAR Environ Res 5:1-16.

    CAS  Google Scholar 

  289. Loonen H, Lindgren F, Hansen B, Karcher W, Niemelä J. 1999. Prediction of biodegradability from chemical structure modeling of ready biodegradation test data. Environ Toxicol Chem18:1763-1768.

    CAS  Google Scholar 

  290. Eakin DR, Hyde E, Palmer G. 1974. Use of computers with chemical structural information - ICI CROSSBOW system. Pestic Sci5:319-326.

    CAS  Google Scholar 

  291. MultiCASE Inc. 2007. MultiCASE. Beachwood, OH. http://www.multicase.com.

    Google Scholar 

  292. MultiCASE Inc. 2007. METACPC 1.3. Beachwood, OH.

    Google Scholar 

  293. Klopman G, Tu M. 1997. Structure-biodegradability study and computer-automated prediction of aerobic biodegradation of chemicals. Environ Toxicol Chem 16:1829-1835.

    CAS  Google Scholar 

  294. Jaworska J, Dimitrov S, Nikolova N, Mekenyan O. 2002. Probabilistic assessment of biodegradability based on metabolic pathways: CATABOL System. SAR QSAR Environ Res13:307-323.

    CAS  Google Scholar 

  295. Laboratory of Mathematical Chemistry, University Bourgas. 2007. OASIS Software. Bourgas, Bulgaria. www.oasis-lmc.org.

    Google Scholar 

  296. Laboratory of Mathematical Chemistry, University Bourgas. 2007. CATABOL 5.10.0. Bourgas, Bulgaria.

    Google Scholar 

  297. UM-BBD. 2005. PredictBT. University of Minnesota, Predictive Biogradation Project, Minneapolis, MN.

    Google Scholar 

  298. Hou BK, Ellis LBM, Wackett LP. 2004. Encoding microbial metabolic logic: predicting biodegradation. J Industr Microbiol Biotech31:261-272.

    CAS  Google Scholar 

  299. Mackay D, Shiu WY, Ma KC. 1992. Illustrated Handbook References 425 of Physical-Chemical Properties and Environmental Fate for Organic Chemicals.Lewis Publishers, Chelsea, MI.

    Google Scholar 

  300. Kühne R, Ebert R-U, Schüürmann G. 2007. Estimation of compartmental half-lives of organic compounds - structural similarity vs. EPI-suite. QSAR Comb Sci. 26:542-549.

    Google Scholar 

  301. Tomlin CDS, ed. 2006. The Pesticide Manual. A World Compendium.British Crop Protection Council, Farnham, UK.

    Google Scholar 

  302. Verschueren K. 2001. Handbook of Environmental Data on Organic Chemicals. John Wiley & Sons, Inc., New York, NY.

    Google Scholar 

  303. Lide DR, ed. 2005. Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL.

    Google Scholar 

  304. Leo DA. MedChem database. Daylight Chemical Information Systems, Inc., Irvine, CA.

    Google Scholar 

  305. Yalkowsky SH, Dannenfelser RM. 1990. AQUASOL dATAbASE of aqueous solubility 5. University of Arizona, Tucson, AZ.

    Google Scholar 

  306. US Secretary of Commerce. NIST Chemistry WebBook. http://webbook.nist.gov.

    Google Scholar 

  307. CambridgeSoft Corporation. Chemfinder WebServer. CambridgeSoft, Cambridge, MA. http://www.chemfinder. com.

    Google Scholar 

  308. United States National Library of Medicine. ChemID plus. http://chem.sis.nlm.nih.gov/chemidplus.

    Google Scholar 

  309. US Department of Agriculture - Agricultural Research Service. The ARS Pesticide Properties Database. http:// www.arsusda.gov/acsl/services/ppdb.

    Google Scholar 

  310. Beilstein Informationssysteme GmbH. Beilstein online database. http://www.beilstein.com.

    Google Scholar 

  311. Fachinformationszentrum Chemie (FIZ) Berlin (D). Infotherm - thermophysical properties database. http:// www.chemistry.de/infotherm/servlet/infothermSearch.

    Google Scholar 

  312. Baum EJ. 1998. Chemical Property Estimation.CRC Press, Boca Raton, FL.

    Google Scholar 

  313. Reinhard M, Drefahl A. 1999. Handbook for Estimating Physicochemical Properties of Organic Compounds. John Wiley, New York, NY.

    Google Scholar 

  314. Grant DJW, Higuchi T. 1990. Solubility Behavior of Organic Compounds.John Wiley, New York, NY.

    Google Scholar 

  315. Van Krevelen DW. 1997. Properties of Polymers. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  316. Boethling RS, Howard PH, Meylan WM. 2004. Finding and estimating chemical property data for environmental assessment. Environ Toxicol Chem23:2290-2308.

    CAS  Google Scholar 

  317. Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH, eds. 1988. Environmental Inorganic Chemistry. Properties, Processes and Estimation Methods.Pergamon Press, Elmsford, NY.

    Google Scholar 

  318. Meylan WM. EPISUITE. Syracuse Research Corporation, Syracuse, NY. http://www.syrres.com/esc/est_soft.htm.

    Google Scholar 

  319. Frederick/Bethesda Data and Online Services. 2002. NCI Database. http://129.43.27.140/ncidb2.

    Google Scholar 

  320. United States National Center for Biotechnology Information. 2005. PubChem. Bethesda, MD. http:// pubchem.ncbi.nlm.nih.gov/search.

    Google Scholar 

  321. Masunaga S, Wolfe NL, Carriera L. 1993. Transformation of parasubstituted benzonitriles in sediment and in sediment extract. Water Sci Technol28:123-132.

    CAS  Google Scholar 

  322. Johnson H, Kenley RA, Rynard C, Golub MA. 1985. Qsar for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. Quant Struct -Act Relat4:172-180.

    CAS  Google Scholar 

  323. Wolfe NL, Steen WC, Burns LA. 1980. Phthalateester hydrolysis - linear free-energy relationships. Chemosphere9:403-408.

    CAS  Google Scholar 

  324. Wolfe NL, Zepp RG, Paris DF. 1978. Use of structurereactivity relationships to estimate hydrolytic persistence of carbamate pesticides. Wat Res12:561-563.

    CAS  Google Scholar 

  325. Drossman H, Johnson H, Mill T. 1988. Structure activity relationships for environmental processes 1: Hydrolysis of esters and carbamates. Chemosphere17:1509-1530.

    Google Scholar 

  326. Lyman WJ. 1990. Adsorption coefficient for soils and sediment. In: Lyman WJ, Reehl WF, Rosenblatt DH, eds, Handbook of Chemical Property Estimation Methods,3rd ed. American Chemical Society, Washington, DC, pp. 4- 1-4-33.

    Google Scholar 

  327. Peijnenburg WJGM, Debeer KGM, Denhollander HA, Stegeman MHL, Verboom H. 1993. Kinetics, products, mechanisms and QSARs for the hydrolytic transformation of aromatic nitriles in anaerobic sediment slurries. Environ Toxicol Chem12:1149-1161.

    CAS  Google Scholar 

  328. Vogel TM, Reinhard M. 1986. Reaction products and rates of disappearance of simple bromoalkanes, 1,2- dibromopropane, and 1,2-dibromoethane in water. Environ Sci Technol20:992-997.

    CAS  Google Scholar 

  329. Perrin DD, Dempsey B, Serjeant EP. 1981. pKa Prediction for Organic Acids and Bases.Chapman and Hall, Cambridge, UK.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Schüürmann, G., Ebert, RU., Nendza, M., Dearden, J., Paschke, A., Kühne, R. (2007). Predicting Fate-Related Physicochemical Properties. In: Leeuwen, C.v., Vermeire, T. (eds) Risk Assessment of Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6102-8_9

Download citation

Publish with us

Policies and ethics