Skip to main content

Transport, Accumulation and Transformation Processes

  • Chapter
Risk Assessment of Chemicals

This chapter will deal with the phenomena which determine the concentration of substances in the environment as well as within organisms. Knowing the concentrations of chemicals in different compartments as well as their further fate within these compartments is one of the key issues in a chemicals’ risk assessment procedure. Once the concentrations in the various relevant environmental compartments are known or estimated, they can be compared with information on the hazards of a substance in that compartment. The relevant environmental compartments may be water, sediment, soil, air, or biota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mackay D. 1991. Multimedia Environmental Models. The Fugacity Approach. Lewis Publ, Chelsea, MI.

    Google Scholar 

  2. Schwarzenbach RP. 1992. Phase-transfer of organic pollutants in the environment. Phase-transfer of organic pollutants in the environment, Wageningen, The Netherlands.

    Google Scholar 

  3. Junge CE. 1977. Basic considerations about trace constituents in the atmosphere in relation to the fate of global pollutants. Basic considerations about trace constituents in the atmosphere in relation to the fate of global pollutants, ed, Fate of Pollutants in the Air and Water Environment. Part I, Advances in Environmental Science and Technology, Vol 8. Wiley Interscience, New York, NY, pp. 7-25.

    Google Scholar 

  4. Kauneliene V, Cicenaite A, Jegorova I, Zaliauskiene A, Bergqvist P-A. 2003. Tentative air concentrations of PAHs and PCBs in urban area of Lithuania. Environ Res Engineering Man 24:33-39.

    Google Scholar 

  5. Van Mazijk A, Veldkamp RG. 1989. Waterkwaliteits modelering oppervlaktewater. Waterkwaliteits modelering oppervlaktewater, Technical University, Delft, The Netherlands [in Dutch].

    Google Scholar 

  6. Janse J. 2005. Model studies on the eutrophication of shallow lakes and ditches. Model studies on the eutrophication of shallow lakes and ditches, Wageningen University. Wageningen, The Netherlands.

    Google Scholar 

  7. Neely WB. 1982. The definition and use of mixing zone. Environ Sci Technol16:519A-5121A.

    Article  Google Scholar 

  8. Csanady GT. 1973. Turbulent diffusion in the environment. Turbulent diffusion in the environment, Dordrecht, The Netherlands.

    Google Scholar 

  9. Fischer HB, Imberger J, List EJ, Koh RCY, Brooks RH. 1979. Mixing in Inland and Coastal Waters. Mixing in Inland and Coastal Waters. Academic Press New York, NY.

    Google Scholar 

  10. Van de Meent D. 1993. SIMPLEBOX, a generic multimedia fate evaluation Model. SIMPLEBOX, a generic multimedia fate evaluation Model, Bilthoven, The Netherlands.

    Google Scholar 

  11. Spitz K, Moreno J. 1996. A practical guide to groundwater and solute transport modeling. A practical guide to groundwater and solute transport modeling, New York, NY.

    Google Scholar 

  12. Fowler D. 1980. Removal of sulphur and nitrogen compounds from the atmosphere and by dry deposition. Removal of sulphur and nitrogen compounds from the atmosphere and by dry deposition, Tollan A, eds, Ecological impact of Acid Precipitation.Oslo-As, Norway, pp. 22-32.

    Google Scholar 

  13. Whitman WG. 1923. The two-film theory of gas absorption. Chem Metal Eng29:146-150.

    CAS  Google Scholar 

  14. Liss PS, Slater PG. 1974. Flux of gases across the air-sea interface. Nature247:181-184.

    Article  CAS  Google Scholar 

  15. Thibodeaux LJ. 1996. Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil, 2nd ed. Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil, 2nd ed, New York, NY.

    Google Scholar 

  16. Schwarzenbach RP, Gschwend PM, Imboden DM. 2003. Environmental Organic Chemistry 2nd edition. Environmental Organic Chemistry 2nd edition, New York, NY.

    Google Scholar 

  17. Mackay D, Paterson S, Cheung B, Neely WB. 1985. Evaluating the environmental behaviour of chemicals with a Level-III model. Chemosphere14:335-374.

    Article  CAS  Google Scholar 

  18. McLachlan MS. 1996. Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environ Sci Technol30:252-259.

    Article  CAS  Google Scholar 

  19. Arnot J, Gobas FAPC. 2003. A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR Comb Sci22: 337-345.

    Article  CAS  Google Scholar 

  20. Phillips DJH. 1993. Bioaccumulation. Bioaccumulation, ed, Handbook of Ecotoxicology, Vol 1.Blackwell Sci Publ, Oxford, UK, pp. 378-396.

    Google Scholar 

  21. Block M. 1991. Uptake of cadmium in fish. Uptake of cadmium in fish, Uppsala University, Uppsala, Sweden.

    Google Scholar 

  22. Sijm DTHM, Seinen W, Opperhuizen A. 1992. Lifecycle biomagnification study in fish. Environ Sci Technol 26:2162-2174.

    Article  CAS  Google Scholar 

  23. McGeer JC, Brix KV, Skeaff JM, DeForest DK, Brigham SI, Adams WJ, Green A. 2003. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem22:1017-1037.

    Article  CAS  PubMed  Google Scholar 

  24. Adams WJ, Conard B, Ethier G, Brix KV, Paquin PR, Di Toro DM. 2000. The challenges of hazard identification and classification of insoluble metals and metal substances for the aquatic environment. Human Ecol Risk Assess6:1019-1038.

    Article  CAS  Google Scholar 

  25. Tas JW. 1993. Fate and effects of triorganotins in the aqueous environment. Fate and effects of triorganotins in the aqueous environment, lethal body burdens, sorption and physicochemical properties. PhD Thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  26. Sijm DTHM, Pärt P, Opperhuizen A. 1993. The influence of temperature on the uptake rate constants of hydrophobic compounds determined by the isolated perfused gills of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol25:1-14.

    Article  CAS  Google Scholar 

  27. Gobas FAPC, Opperhuizen A, Hutzinger O. 1986. Bioconcentration of hydrophobic chemicals in fish: relationship with membrane permeation. Environ Toxicol Chem5:637-646.

    Article  CAS  Google Scholar 

  28. Sijm DTHM, Verberne ME, de Jonge WJ, Pärt P, Opperhuizen A. 1995. Allometry in the uptake of hydrophobic chemicals determined in vivoand in isolated perfused gills. Toxicol Appl Pharmacol131:130-135.

    Article  CAS  PubMed  Google Scholar 

  29. Sijm DTHM, Hermens JLM. 1999. Internal effect concentrations: Link between bioaccumulation and ecotoxicity for organic chemicals. Internal effect concentrations: Link between bioaccumulation and ecotoxicity for organic chemicals, ed, The handbook of environmental chemistry, Vol 2-J. Bioaccumulation: new aspects and developments. Springer-Verlag, Berlin, Germany, pp. 167-199.

    Google Scholar 

  30. Hendriks JA, van der Linde A, Cornelissen G, Sijm DTHM. 2001. The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water partition ratio and species weight. Environ Toxicol Chem20:1399-1420.

    Article  CAS  PubMed  Google Scholar 

  31. Hendriks JA, Heikens A. 2001. The power of size. 2. Rate constants and equilibrium ratios for accumulation of inorganic substances related to species weight. Environ Toxicol Chem20:1421-1437.

    Article  CAS  PubMed  Google Scholar 

  32. Leland HV, Kuwabara JS. 1985. Trace metals. Trace metals, Petrocelli SR, eds, Fundamentals of Aquatic Toxicology.Hemisphere, Washington DC, pp. 374-415.

    Google Scholar 

  33. Niimi AJ. 1987. Biological half-lives of chemicals in fishes. Rev Environ Contam Toxicol99:1-46.

    CAS  PubMed  Google Scholar 

  34. Organization for Economic Co-operation and Development. (1996). Bioaccumulation: Flow-through Fish Test. OECD Guideline for the testing of chemicals No. 305. OECD, Paris, France.

    Google Scholar 

  35. American Society for Testing and Materials. 2003. E1022-94. E1022-94, West Conshohocken, PA, United States.

    Google Scholar 

  36. US Environmental Protection Agency. 1996. Ecological Effects Test Guidelines. Ecological Effects Test Guidelines, Pesticides and Toxic Substances. Washington, DC.

    Google Scholar 

  37. US Environmental Protection Agency. 1996. Ecological Effects Test Guidelines. Ecological Effects Test Guidelines, Pesticides and Toxic Substances. Washington, DC.

    Google Scholar 

  38. European Commission. 2003. 2nd edition of the Technical Guidance Document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 2nd edition of the Technical Guidance Document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No, Luxembourg.

    Google Scholar 

  39. US Environmental Protection Agency. 1999. Category for persistent, bioaccumulative and toxic new chemical substances. Category for persistent, bioaccumulative and toxic new chemical substances, Office of Research and Development, Washington, DC.

    Google Scholar 

  40. Anliker R, Moser P, Poppinger D. 1988. Bioaccumulation of dyestuffs and organic pigments in fish. Relationships to hydrophobicity and steric factors. Chemosphere 17:1631-1644.

    Article  Google Scholar 

  41. Rekker RF, Mannhold R. 1992. Calculation of drug lipophilicity. Calculation of drug lipophilicity, Germany: VCH. (Cited at www. voeding.tno.nl/ProductSheet.cfm?PNR=037e)

    Google Scholar 

  42. Burreau S, Zebuhr Y, Broman D, Ishaq R. 2004. Biomagnification of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) studies in pike (Esox lucius),perch (Perca fluviatilis)and roach (Rutilus rutilus)from the Baltic Sea. Chemosphere 55:1043-1052.

    Article  CAS  PubMed  Google Scholar 

  43. De Wolf W, Comber M, Douben P, Gimeno S, Holt H, LĂ©onard M, Lillicrap A, Sijm D, van Egmond R, Weisbrod A, Whale G. 2007. Animal use replacement, reduction and refinement: development of an Integrated Testing Strategy for Bioconcentration of Chemicals in Fish. IEAM3:3-17.

    PubMed  Google Scholar 

  44. Opperhuizen A, Sijm DTHM. 1990. Bioaccumulation and biotransformation of polychlorinated dibenzo-pdioxins and dibenzofurans in fish. Environ Toxicol Chem 9:175-186.

    Article  CAS  Google Scholar 

  45. Sijm DTHM, Wever H, Opperhuizen A. 1993. Congenerspecific biotransformations and bioaccumulation of PCDDs and PCDFs from fly ash in fish. Environ Toxicol Chem12:1895-1907.

    Article  CAS  Google Scholar 

  46. Anliker R, Moser P. 1987. The limits of bioaccumulation of organic pigments in fish: Their relation to the partition coefficient and the solubility in water and octanol. Ecotox Environ Saf13:43-52.

    Article  CAS  Google Scholar 

  47. Opperhuizen A, Damen HWJ, Asyee GM, van der Steen JMD, Hutzinger O. 1987. Uptake and elimination by fish of polydimethylsiloxanes (silicones) after dietary and aqueous exposure. Toxicol Environ Chem13:265-285.

    Article  CAS  Google Scholar 

  48. Morris S, Allchin CR, Zegers BN, Haftka JJH, Boon JP, Belpaire C, Leonards PEG, Van Leeuwen SPJ, De Boer J. 2004. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ Sci Technol38:5497-5504.

    Article  CAS  PubMed  Google Scholar 

  49. Dimitrov SD, Dimitrova NC, Walker JD, Veith GD, Mekenyan OG. 2002. Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of molecular size. Pure Appl Chem74:1823-1830.

    Article  CAS  Google Scholar 

  50. Dimitrov SD, Dimitrova NC, Walker JD, Veith GD, Mekenyan OG. 2003. Bioconcentration potential predictions based on molecular attributes - an early warning approach for chemicals found in humans, birds, fish and wildlife. QSAR Comb Sci22:58-68.

    Article  CAS  Google Scholar 

  51. Dimitrov SD, Dimitrova NC, Parkerton T, Comber MHI, Bonnell M, Mekenyan OG. 2006. Baseline model for identifying the bioaccumulation potential of chemicals. SAR QSAR Environ Res16:531-554.

    Article  CAS  Google Scholar 

  52. Opperhuizen A. 1986. Bioconcentration of hydrophobic chemicals in fish. Bioconcentration of hydrophobic chemicals in fish, Purdy R, eds, Aquatic toxicology and environmental fate, Vol 9,STP 921. American Society for Testing and Materials (ASTM), Philadelphia, USA, pp. 304-315.

    Chapter  Google Scholar 

  53. Tolls J, Haller M, Labee E, Verweij M, Sijm DTHM. 2000. Experimental determination of bioconcentration of the nonionic surfactant alcohol ethoxylated. Environ Toxicol Chem19:646-653.

    Article  CAS  Google Scholar 

  54. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews23:3-25.

    Article  CAS  Google Scholar 

  55. Wenlock MC, Austin RP, Barton P, Davis AM, Leeson PD. 2003. A comparison of physiochemical property profiles of development and marketed oral drugs. J Med Chem46:1250-1256.

    Article  CAS  PubMed  Google Scholar 

  56. Proudfoot JR. 2005. The evolution of synthetic oral drug properties. Bioorganic Medicinal Chemistry Letters 15:1087-1090.

    Article  CAS  PubMed  Google Scholar 

  57. Vieth M, Siegel MG, Higgs RE, Watson IA, Robertson DH, Savin KA, Durst GL, Hipskind PA. 2004. Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem47:224- 232.

    Article  CAS  PubMed  Google Scholar 

  58. Wood CM, Kelly SP, Zhou B, Fletcher M, O’Donnell M, Eletti B, Pärt P. 2002. Cultured gill epithelia as models for the freshwater fish gill. Biochim Biophys Acta - Biomembranes1566:72-83.

    Article  CAS  Google Scholar 

  59. Hidalgo IJ, Li J. 1996. Carrier-mediated transport and efflux mechanisms in Caco-2 cells. Advanced Drug Delivery Reviews22:53-66.

    Article  CAS  Google Scholar 

  60. Bailey CA, Bryla P, Malick AW. 1996. The use of the intestinal epithelial cell culture model, Caco-2, in pharmaceutical development. Advanced Drug Delivery Reviews22:85-103.

    Article  CAS  Google Scholar 

  61. Pärt P. 1990. The perfused fish gill preparation in studies of the bioavailability of chemicals. Ecotox Environ Saf 19:106-115.

    Article  Google Scholar 

  62. Pärt P, Saarikoski J, Tuurula H, Havaste H. 1992. The absorption of hydrophobic chemicals across perfused gills of rainbow trout. J Exp Biol6:339-348.

    Google Scholar 

  63. Chessells M, Hawker DW, Connell DW. 1992. Influence of solubility in lipid on bioconcentration of hydrophobic compounds. Ecotox Environ Saf23:260-273.

    Article  CAS  Google Scholar 

  64. Banerjee S, Baughman GL. 1991. Bioconcentration factors and lipid solubility. Environ Sci Technol25:536- 539.

    Article  CAS  Google Scholar 

  65. Sijm DTHM, Opperhuizen A. 1989. Biotransformation of organic chemicals by fish: a review of enzyme activities and reactions. Biotransformation of organic chemicals by fish: a review of enzyme activities and reactions, ed, Handbook of Environmental Chemistry, Vol 2E, Reactions and Processes.Springer-Verlag, Heidelberg, Germany, pp. 163-235.

    Google Scholar 

  66. Kelly BC, Gobas FAPC, McLachlan MS. 2004. Intestinal absorption and biomagnification of organic contaminants in fish, wildlife and humans. Environ Toxicol Chem23: 2324-2336.

    Article  CAS  PubMed  Google Scholar 

  67. Opperhuizen A. 1992. Bioconcentration and biomagnification: is a distinction necessary? In: Nagel R, Loskill R, eds, Bioaccumulation in aquatic systems. Bioconcentration and biomagnification: is a distinction necessary? In: Nagel R, Loskill R, eds, Bioaccumulation in aquatic systems, Berlin, VCH Publishers, Weinheim, Germany, pp. 67-80.

    Google Scholar 

  68. Opperhuizen A, Schrap SM. 1988. Uptake efficiencies of two polychlorobiphenyls in fish after dietary exposure to five different concentrations. Chemosphere17:253-262.

    Article  CAS  Google Scholar 

  69. Lee II H. 1991. A clam’s eye view of the bioavailability of sediment-associated pollutants. A clam’s eye view of the bioavailability of sediment-associated pollutants, ed, Organic Substances and Sediments in Water, Volume III. Lewis Publisher Inc, Chelsea, MI, pp. 73-93.

    Google Scholar 

  70. Opperhuizen A. 1991. Bioaccumulation kinetics: experimental data and modelling. Bioaccumulation kinetics: experimental data and modelling, Bjørseth A, eds, Organic Micropollutants in the Aquatic Environment, Proc Sixth European Symp Lisbon, Portugal, 1990. Kluwer Acad Publ, Dordrecht, The Netherlands, pp. 61-70.

    Google Scholar 

  71. Schrap SM. 1991. Bioavailability of organic chemicals in the aquatic environment. Comp Biochem Physiol 100C:13-16.

    CAS  Google Scholar 

  72. Parkerton T, Letkinski D, Febbo E, Davi R, Dzamba C, Connelly M, Christensen K, Peterson D. 2001. A practical testing approach for assessing the bioaccumulation potential of poorly water soluble organic chemicals. A practical testing approach for assessing the bioaccumulation potential of poorly water soluble organic chemicals, Madrid, Spain. Manuscript No. 00.7014. Annandale NJ: ExxonMobil Biomedical Sciences Inc.

    Google Scholar 

  73. Anonymous. 2004. Fish, dietary bioaccumulation study – Basic Protocol. Fish, dietary bioaccumulation study – Basic Protocol, Bioaccumulative and Toxic substances. European Chemicals Bureau, Ispra, Italy.

    Google Scholar 

  74. Organization for Economic Co-operation and Development. 2005. Proposal for a new guideline for the testing of chemicals - Bioaccumulation: Sediment test using benthic oligochaetes. Proposal for a new guideline for the testing of chemicals - Bioaccumulation: Sediment test using benthic oligochaetes, Paris, France.

    Google Scholar 

  75. American Society for Testing and Materials. 2000. E1688-00a. Standard guide for determination of the bioaccumulation of sediment-associated contaminants by benthic invertebrates. ASTM International, West Conshohocken, PA.

    Google Scholar 

  76. Sharpe S, Mackay D. 2000. A framework for evaluating bioaccumulation in food webs. Environ Sci Technol 34:2373-2379.

    Article  CAS  Google Scholar 

  77. Arnot J, Gobas FAPC. 2004. A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem23:2343-2355.

    Article  CAS  PubMed  Google Scholar 

  78. Traas TP, Van Wezel AP, Hermens JLM, Zorn M, Van Hattum AGM, Van Leeuwen CJ. 2004. Prediction of environmental quality criteria from internal effect concentrations for organic chemicals with a food web model. Environ Toxicol Chem23:2518-2527.

    Article  CAS  PubMed  Google Scholar 

  79. Voutsas E, Magoulas K, Tassios D. 2002. Prediction of the bioaccumulation of persistent organic pollutants in aquatic food webs. Chemosphere48:645-651.

    Article  CAS  PubMed  Google Scholar 

  80. Morrison LN, Cohen AS. 1980. Plant uptake, transport and metabolism. In: Hutzinger O, ed, Handbook of Environmental Chemistry, 2A. Reactions and Processes. Springer-Verlag, Heidelberg, Germany, pp. 193-219.

    Google Scholar 

  81. Briggs GG, Bromilow RH, Evans AA. 1982. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci13:495-504.

    Article  CAS  Google Scholar 

  82. Iwata Y, Gunther FA, Westlake WE. 1974. Uptake of a PCB (Aroclor 1254) from soil by carrots under field conditions. Bull Environ Contam Toxicol11:523-528.

    Article  CAS  PubMed  Google Scholar 

  83. Wild E, Dent J, Thomas GO, Jones KC. 2005. Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695-3702.

    Article  CAS  PubMed  Google Scholar 

  84. Kulhánek A, Trapp S, Sismilich M., Janku J, Zimová M, 2005. Crop-specific human exposure assessment for polycyclic aromatic hydrocarbons in Czech soils. Sci Tot Environ339:71-80.

    Article  CAS  Google Scholar 

  85. McCrady JK, McFarlane C, Lindstrom FT. 1987. The transport and affinity of substituted benzenes in soybean stems. J Experim Biol38:1875-1890.

    CAS  Google Scholar 

  86. Briggs GG, Rigitano RLO, Bromilow RH. 1987. Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101-112.

    Article  CAS  Google Scholar 

  87. HĂĽlster A, MĂĽller JF, Marschner H. 1994. Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol28:1110-1115.

    Article  Google Scholar 

  88. Trapp S, Matthies M. 1998. Chemodynamics and environmental modeling. Springer, Berlin, pp. 115-127.

    Google Scholar 

  89. Briggs GG, Rigitano RLO, Bromilow RH. 1987. Physico-chemical factors affecting uptake by roots and translocation to shoots of weak acids in barley. Pestic Sci 19:101-112.

    Article  CAS  Google Scholar 

  90. Trapp, S. 2002. Dynamic root uptake model for neutral lipophilic organics. Environ Toxicol Chem2:203-206.

    Article  Google Scholar 

  91. Kerstiens G. 2006. Parameterization, comparison, and validation of models quantifying relative change of cuticular permeability with physicochemical properties of diffusants. J Exper Botany57:2525-2533.

    Article  CAS  Google Scholar 

  92. MĂĽller JF, Hawker DW, Connell DW. 1994. Calculation of bioconcentration factors of persistent hydrophobic compounds in the air/vegetation system. Chemosphere 29:623-640.

    Article  Google Scholar 

  93. Paterson S, Mackay D, Bacci E, Calamari D. 1991. Correlation of the equilibrium and kinetics of leaf-air exchange of hydrophobic organic chemicals. Environ Sci Technol25:866-871.

    Article  CAS  Google Scholar 

  94. Kömp P, McLachlan MS. 1997. Interspecies variability of the plant/air partitioning of polychlorinated biphenyls. Environ. Sci. Technol.31:2944-2948.

    Article  Google Scholar 

  95. Kömp P, McLachlan MS. 1997. The influence of temperature on the plant/air partitioning of semivolatile organic compounds. Environ Sci Technol31:886-890.

    Article  Google Scholar 

  96. Czub G, McLachlan MS. 2004. A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ Toxicol Chem23:2356-2366.

    Article  CAS  PubMed  Google Scholar 

  97. Horstmann M, McLachlan MS. 1998. Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos Environ32:1799-1809.

    Article  CAS  Google Scholar 

  98. Smith KEC, Jones KC. 2000. Particles and vegetation: implications for the transfer of particle-bound organic contaminants to vegetation. Sci Tot Environ246:207- 236.

    Article  CAS  Google Scholar 

  99. McLachlan MS 1999. A framework for the interpretation of measurements of SOCs in plants. Environ Sci Technol 33:1799-1804.

    Article  CAS  Google Scholar 

  100. Rigitano FLO, Bromilow RH, Briggs GG, Chamberlain K. 1987. Phloem translocation of weak acids in Ricinus communis. Pest Sci19:113-133.

    Article  CAS  Google Scholar 

  101. Mackay D, Foster KL, Patwa Z, Webster E. 2006. Chemical partitioning to foliage: The contribution and legacy of David Calamari. Environ Sci Pollut Res13:2-8.

    Article  CAS  Google Scholar 

  102. Jager T. 1998. Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms (Oligochaeta). Environ Toxicol Chem17:2080-2090.

    Article  CAS  Google Scholar 

  103. Stroomberg, GJ, Zappey H, Steen RJCA, Van Gestel CAM, Ariese F, Velthorst NH, Van Straalen NM. 2004. PAH biotransformation in terrestrial invertebrates - a new phase II metabolite in isopods and springtails. Comp Biochem PhysiolPt C 138:129-137.

    Google Scholar 

  104. Jager T. 2004. Modelling ingestion as an exposure route for organic chemicals in earthworms (Oligochaeta). Ecotox Environ Saf57:30-38.

    Article  CAS  Google Scholar 

  105. Jager T, Fleuren RHLJ, Hogendoorn EA, De Korte G. 2003. Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol 37:3399-3404.

    Article  CAS  PubMed  Google Scholar 

  106. Belfroid A, Meiling J, Drenth HJ, Hermens J, Seinen W, Van Gestel K. 1995. Dietary uptake of superlipophilic compounds by earthworms (Eisenia andrei). Ecotox Environ Saf31:185-191.

    Article  CAS  Google Scholar 

  107. Environment Agency. 2007. Verification of bioaccumulation models for use in environmental standards – Part B – Terrestrial models – Draft Report.

    Google Scholar 

  108. Van der Wal L, Jager T, Fleuren RHLJ, Barendregt A, Sinnige TL, Van Gestel CAM, Hermens JLM. 2004. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ Sci Technol38:4842-4848.

    Article  CAS  PubMed  Google Scholar 

  109. Janssen MPM, Bruins A, De Vries TH, Van Straalen NM. 1991. Comparison of cadmium kinetics in four soil arthropod species. Arch Environ Contam Toxicol20:305- 312.

    Article  CAS  Google Scholar 

  110. Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijenburg WJGM. 2004. Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol38:4705-4712.

    Article  CAS  PubMed  Google Scholar 

  111. Posthuma L, Van Straalen NM. 1993. Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Physiol106C:11-38.

    CAS  Google Scholar 

  112. Vijver MG, Van Gestel CAM, Van Straalen NM, Lanno RP, Peijnenburg WJGM. 2006. Biological significance of metals partitioned to subcellular fractions within earthworms (Apporrectodea caliginosa). Environ Toxicol Chem25:807-814.

    Article  CAS  Google Scholar 

  113. USES. 1994. Uniform system for the evaluation of substances, version 1.0. Uniform system for the evaluation of substances, version 1.0, Ministry of Housing, Spatial Planning and the Environment, Ministry of Welfare, Health and Cultural Affairs. VROM distribution No. 11144/150, The Hague, The Netherlands.

    Google Scholar 

  114. Ma WC. 1987. Heavy metal contamination in the mole, Talpa europaea,and earthworms as an indicator of metal bioavailability in terrestrial environments. Bull Environ Contam Toxicol39:933-938.

    Article  CAS  PubMed  Google Scholar 

  115. Ma WC, Denneman W, Faber J. 1991. Hazardous exposure of groundliving small animals to cadmium and lead in contaminated terrestrial ecosystems. Arch Environ Contam Toxicol20:266-270.

    Article  CAS  PubMed  Google Scholar 

  116. Norstrom RJ, McKinnon AE, DeFreitas AS. 1979. A bioenergetics based model for pollutant accumulation in fish: simulation of PCB and methylmercury residue levels in Ottawa river yellow perch (Perca flavescens). J Fish Res Board Can33:248-267.

    Google Scholar 

  117. DeBruyn AMH, Gobas FAPC. 2006. A bioenergetic biomagnification model for the animal kingdom. Environ Sci Technol40:1581-1587.

    Article  CAS  PubMed  Google Scholar 

  118. Travis CC, Arms AD. 1988. Bioconcentration of organics in beef, milk and vegetation. Environ Sci Technol22:271- 274.

    Article  CAS  Google Scholar 

  119. Burns LA, Baughman GL. 1985. Fate modelling. Fate modelling, Petrocelli SR, eds, Fundamentals of Aquatic Toxicology.Hemisphere Publ Corp, Washington DC, USA, pp. 558-584.

    Google Scholar 

  120. Mabey W, Mill T. 1978. Critical review of hydrolysis of organic compounds in water under environmental conditions. J Phys Chem Ref Data7:383-415.

    Article  CAS  Google Scholar 

  121. Haag WR, Yao CCD. 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol26:1005-1013.

    Article  CAS  Google Scholar 

  122. Mill T. 1980. Chemical and photo oxidation. Chemical and photo oxidation, ed, The Handbook of Environmental Chemistry, Volume 2, part A: Reactions and Processes. Springer Verlag, Berlin, Germany, pp. 77-105.

    Google Scholar 

  123. Wolfe NL, Macalady DL. 1992. New perspectives in aquatic redox chemistry: abiotic transformations of pollutants in groundwater and sediments. J Contam Hydrol9:17-34.

    Article  CAS  Google Scholar 

  124. Organization for Economic Co-operation and Development. 1986. OECD guidelines for the testing of chemicals. OECD guidelines for the testing of chemicals, Paris, France.

    Google Scholar 

  125. Zepp RG. 1982. Experimental approaches to environmental photochemistry. Experimental approaches to environmental photochemistry, ed, The Handbook of Environmental Chemistry, 1st ed Vol 2/part B. Springer-Verlag, Berlin, Germany, pp. 19-41.

    Google Scholar 

  126. Bolt TL, Bruggewert GM. 1976. Soil Chemistry. Soil Chemistry, Amsterdam, The Netherlands.

    Google Scholar 

  127. Thauer RK, Jungermann K, Decker K. 1977. Energy conservation in chemoautotrophic anaerobic bacteria. Bact Rev41:100-148.

    CAS  PubMed  Google Scholar 

  128. Horvath RS. 1972. Microbial cometabolism and the degradation of organic compounds in nature. Bact Rev 36:146-155.

    CAS  PubMed  Google Scholar 

  129. UMBBD, University of Minnesota Biodegradation and Biocatalysis Database, 2006, http://umbbd.ahc.umn.edu/

    Google Scholar 

  130. KEGG Pathway, Kyoto Encyclopedia of Genes and Genomes Pathway Database, 2006, http://www.genome. jp/kegg/pathway.html

    Google Scholar 

  131. Swisher RD. 1987. Surfactant Biodegradation. Surfactant Biodegradation. Marcel Dekker, New York, NY.

    Google Scholar 

  132. Kadiyala V, Spain JC. 1998. A two-component monooxygenase catalyzes both the hydroxylation of pnitrophenol and the oxidative release of nitrite from 4- nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol64:2479-2484.

    CAS  PubMed  Google Scholar 

  133. Organization for Economic Co-operation and Development. 1981 and 1993. OECD guidelines for the testing of chemicals. OECD guidelines for the testing of chemicals, Paris, France.

    Google Scholar 

  134. Khan SJ, Rorije E. 2002. Pharmaceutically active compounds in aquifer storage and recovery. Pharmaceutically active compounds in aquifer storage and recovery, ed, Management of Aquifer Recharge for Sustainability. A.A. Balkema Publishers, The Netherlands, pp. 169- 174.

    Google Scholar 

  135. Tiedje JM, Boyd SA, Fathepure BZ. 1987. Anaerobic degradation of chlorinated aromatic hydrocarbons. Anaerobic degradation of chlorinated aromatic hydrocarbons, Developments in Industrial Microbiology 27:117-127.

    CAS  Google Scholar 

  136. Rorije E, Peijnenburg WJGM, Klopman G. 1998. Structural requirements for the anaerobic biodegradation of organic chemicals: A fragment model analysis. Environ Toxicol Chem17:1943-1950.

    Article  CAS  Google Scholar 

  137. Klopman G, Saiakhov R, Tu M, Pusca F, Rorije E. 1998. Computer-assisted evaluation of anaerobic biodegradation products. Pure and Applied Chemistry 70:1385-1394.

    Article  CAS  Google Scholar 

  138. Alexander M. 1973. Nonbiodegradable and other recalcitrant molecules - Biotechnology report. Biotechol Bioengineer15:611-647.

    Article  CAS  Google Scholar 

  139. Klecka GM. 1985. Biodegradation. Biodegradation, Blau GE, eds, Environmental Exposure from Chemicals, Vol 1. CRC Press Inc, Boca Raton, FL, pp. 109-155.

    Google Scholar 

  140. Organization for Economic Co-operation and Development. 1976. Proposed method for the determination of the biodegradability of surfactants used in synthetic detergents. Proposed method for the determination of the biodegradability of surfactants used in synthetic detergents, Paris, France.

    Google Scholar 

  141. King EF. 1981. Biodegradability testing. Biodegradability testing, Medmenham, UK.

    Google Scholar 

  142. Struijs J, van den Berg R. 1995. Standardized biodegradability tests: extrapolation to aerobic environments. Water Research29:255-262.

    Article  CAS  Google Scholar 

  143. STEP. 2004. Simulation testing of environmental persistence (STEP): a two day workshop, Rotterdam, 4-5 October 2004.

    Google Scholar 

  144. Doull J, Klaassen CD, Amdur MO, eds, 1986. Casarett and Doull’s Toxicology, the Basic Science of Poisons. Macmillan Publ Comp, New York, NY.

    Google Scholar 

  145. Lech JJ, Vodicnik MJ. 1985. Biotransformation. Biotransformation, Petrocelli SR, eds, Fundamentals of Aquatic Toxicology.Hemisphere, Washington, DC, pp. 526-557.

    Google Scholar 

  146. Homburger F, Hayes JA, Pelikan EW. 1983. A Guide to General Toxicology. A Guide to General Toxicology. Karger/Base, New York, NY.

    Google Scholar 

  147. Kimbrough RD, Jensen AA, eds. 1989. Halogenated Biphenyls, Terphenyls, Naphtalenes, Dibenzodioxins and Related Products. Halogenated Biphenyls, Terphenyls, Naphtalenes, Dibenzodioxins and Related Products, Amsterdam, The Netherlands.

    Google Scholar 

  148. Safe SH. 1994, Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87-149.

    Article  CAS  PubMed  Google Scholar 

  149. Safe SH, ed. 1987. Polychlorinated biphenyls (PCBs): Mammalian and Environmental Toxicology. Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  150. Van Den Berg M, De Jongh J, Poiger H, Olson JR. 1994. The toxicokinetics and metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), and their relevance for toxicity. Crit Rev Toxicol24:1-74.

    Article  PubMed  Google Scholar 

  151. Matsumura F. 1985. Toxicology of Insecticides. Toxicology of Insecticides, Plenum Press, New York, NY.

    Google Scholar 

  152. Safe SH. 1990. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol21:51-88.

    Article  CAS  PubMed  Google Scholar 

  153. Hamelink JL, Landrum PF, Bergman HL, Benson WH. 1994. Bioavailability. Bioavailability, chemical and biological interactions.CRC Press, Boca Raton, FL.

    Google Scholar 

  154. Saarikoski J, Lindström R, Tyynelä M, Viluksela M. 1986. Factors affecting the absorption of phenolics and carboxylic acids in the guppy (Poecilia reticulata). Ecotox Environ Saf11:158-173.

    Article  CAS  Google Scholar 

  155. Koelmans AA, Jonker MTO, Cornelissen G, Bucheli TP, Van Noort PCM, Gustafsson Ă–. 2006. Black Carbon: The reverse of its dark side. Chemosphere63:365-377.

    Article  CAS  PubMed  Google Scholar 

  156. Cornelissen G, Gustafsson Ă–, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM. 2005. Critical Review. Critical Review, Coal, and Kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation and biodegradation. Environ Sci Technol 39: 6881-6895.

    Article  CAS  PubMed  Google Scholar 

  157. Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PG, Delos CG, Di Toro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hostrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santore RC, Schneider U, Stubblefield WA, Wood CM, Wu KB. 2002. The biotic ligand model: a historical overview. Comp Biochem Physiol C Toxicol Pharmacol133: 3-35.

    Article  PubMed  Google Scholar 

  158. Alexander, M. 1994. Biodegradation and Bioremediation. Academic Press, San Diego, CA. ISBN 0-12-049860-X.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Sijm, D., Rikken, M., Rorije, E., Traas, T., Mclachlan, M., Peijnenburg, W. (2007). Transport, Accumulation and Transformation Processes. In: Leeuwen, C.v., Vermeire, T. (eds) Risk Assessment of Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6102-8_3

Download citation

Publish with us

Policies and ethics