Skip to main content

A Global-Local Approach for the Construction of Enrichment Functions for the Generalized FEM and Its Application to Three-Dimensional Cracks

  • Conference paper

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 5))

Abstract

Existing generalized or extended finite element methods for modeling cracks in three-dimensions require the use of a sufficiently refined mesh around the crack front. This offsets some of the advantages of these methods specially in the case of propagating three-dimensional cracks. In this paper, a strategy to overcome this limitation is investigated. The approach involves the development of enrichment functions that are computed using a new global-local approach. This strategy allows the use of a fixed global mesh around the crack front and is specially appealing for non-linear or time dependent problems since it avoids mapping of solutions between meshes. The resulting technique enjoys the same flexibility of the so-called meshfree methods for this class of problem while being more computationally efficient.

The proposed generalized FEM with global-local functions, by numerically constructing the enrichment functions, brings the benefits of existing generalized FEM to a broader class of problems. The procedure is applied to the solution of three-dimensional linear elastic fracture mechanics problems. Numerical experiments demonstrating the computational efficiency and accuracy of the method are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. N. Arnold, A. Mukherjee, and L. Pouly. Locally adapted tetrahedral meshes using bisection. SIAM Journal of Scientific Computing, 22(2):431–448, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. Babuška and B. Andersson. The splitting method as a tool for multiple damage analysis. SIAM journal on scientific computing, 26:1114–1145, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. I. Babuška, G. Caloz, and J. E. Osborn. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numerical Analysis, 31(4):745–981, 1994.

    Google Scholar 

  4. I. Babuška and J. M. Melenk. The partition of unity finite element method. International Journal for Numerical Methods in Engineering, 40:727–758, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Bansch. Local mesh refinement in 2 and 3 dimensions. Impact of Computing in Science and Engineering, 3:181–191, 1991.

    Article  MathSciNet  Google Scholar 

  6. R. Becker and P. Hansbo. A finite element method for domain decomposition with nonmatching grids. Technical Report RR-3613, INRIA, 1999.

    Google Scholar 

  7. T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45:601–620, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. T. Belytschko, N. Moes, S. Usui, and C. Parimi. Arbitrary discontinuities in finite elements. International Journal for Numerical Methods in Engineering, 50:993–1013, 2001.

    Article  MATH  Google Scholar 

  9. C. Bernadi, Y. Maday, and A. Patera. A new non-conforming approach to domain decomposition: The mortar element method. In H. Brezis and J. L. Lions (Eds), Nonlinear Partial Differential Equations and Their Applications. Pitman, 1994, pp. 13–51.

    Google Scholar 

  10. E. G. D. Carmo and A. V. C. Duarte. A discontinuous finite element-base domain decomposition method. Computer Methods in Applied Mechanics and Engineering, 190:825–843, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Dolbow, N. Moes, and T. Belytschko. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elements in Analysis and Design, 36:235–260, 2000.

    Article  MATH  Google Scholar 

  12. C. A. Duarte. The hp Cloud Method. PhD Dissertation, The University of Texas at Austin, December 1996. Austin, TX, USA.

    Google Scholar 

  13. C. A. Duarte and I. Babuška. Mesh-independent directional p-enrichment using the generalized finite element method. International Journal for Numerical Methods in Engineering, 55(12):1477–1492, 2002.

    Article  MATH  Google Scholar 

  14. C. A. Duarte, I. Babuška, and J. T. Oden. Generalized finite element methods for three dimensional structural mechanics problems. In S. N. Atluri and P. E. O’Donoghue (Eds), Modeling and Simulation Based Engineering, Volume I, Proceedings of the International Conference on Computational Engineering Science, Atlanta, GA, October 5–9, 1998. Tech Science Press, 1998, pp. 53–58.

    Google Scholar 

  15. C. A. Duarte, I. Babuška, and J. T. Oden. Generalized finite element methods for three dimensional structural mechanics problems. Computers and Structures, 77:215–232, 2000.

    Article  MathSciNet  Google Scholar 

  16. C. A. Duarte, O. N. Hamzeh, T. J. Liszka, and W.W. Tworzydlo. A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 190:2227–2262, 2001.

    Article  MATH  Google Scholar 

  17. C. A. M. Duarte and J. T. Oden. Hp clouds — A meshless method to solve boundary-value problems. Technical Report 95-05, TICAM, The University of Texas at Austin, May 1995.

    Google Scholar 

  18. C. A. M. Duarte and J. T. Oden. An hp adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 139:237–262, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. A. M. Duarte and J. T. Oden. Hp clouds — An hp meshless method. Numerical Methods for Partial Differential Equations, 12:673–705, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Griebel and M. A. Schweitzer. A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDEs. SIAM Journal Scientific Computing, 22(3):853–890, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Grisvard. Singularities in Boundary Value Problems. Research Notes in Appl. Math. Springer-Verlag, New York, 1992.

    Google Scholar 

  22. T. Y. Hou and X.-H. Wu. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 134:169–189, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods. Mathematics of Computation, 37(155):141–158, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139:289–314, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Moes, M. Cloirec, P. Cartraud, and J.-F. Remacle. A computational approach to handle complex microstructure geometries. Computer Methods in Applied Mechanics and Engineering, 192:3163–3177, 2003.

    Article  MATH  Google Scholar 

  26. N. Moes, J. Dolbow, and T. Belytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46:131–150, 1999.

    Article  MATH  Google Scholar 

  27. N. Moës, A. Gravouil, and T. Belytschko. Non-planar 3D crack growth by the extended finite element and level sets — Part I: Mechanical model. International Journal for Numerical Methods in Engineering, 53:2549–2568, 2002.

    Article  MATH  Google Scholar 

  28. S. A. Nazarov and B. A. Plamenevsky. Elliptic Problems in Domains with Piecewise Smooth Boundaries, De Gruyter Expositions in Mathematics, Vol. 13, Walter de Gruyter, Berlin, 1994.

    Google Scholar 

  29. A. K. Noor. Global-local methodologies and their applications to nonlinear analysis. Finite Elements in Analysis and Design, 2:333–346, 1986.

    Article  Google Scholar 

  30. J. T. Oden and C. A. Duarte. Clouds, Cracks and FEM’s. In B. D. Reddy (Ed.), Recent Developments in Computational and Applied Mechanics. International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain, 1997, pp. 302–321.

    Google Scholar 

  31. J. T. Oden, C. A. Duarte, and O. C. Zienkiewicz. A new cloud-based hp finite element method. Computer Methods in Applied Mechanics and Engineering, 153:117–126, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  32. J. T. Oden and C. A. M. Duarte. Solution of singular problems using hp clouds. In J. R. Whiteman (Ed.), TheMathematics of Finite Elements and Applications — Highlights 1996. John Wiley & Sons, New York, 1997, pp. 35–54.

    Google Scholar 

  33. A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, 1999.

    Google Scholar 

  34. A. Simone, C. A. Duarte, and E. van der Giessen. A generalized finite element method for polycrystals with discontinuous grain boundaries. International Journal for Numerical Methods in Engineering, in press, 2006.

    Google Scholar 

  35. B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 2004.

    Google Scholar 

  36. T. Strouboulis, I. Babuška, and K. Copps. The design and analysis of the generalized finite element mehtod. Computer Methods in Applied Mechanics and Engineering, 81(1–3):43–69, 2000.

    Article  Google Scholar 

  37. T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method: An example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering, 47(8):1401–1417, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  38. T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 190:4081–4193, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  39. T. Strouboulis, L. Zhang, and I. Babuška. Generalized finite element method using meshbased handbooks: Application to problems in domains with many voids. Computer Methods in Applied Mechanics and Engineering, 192:3109–3161, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  40. T. Strouboulis, L. Zhang, and I. Babuška. p-version of the generalized FEM using meshbased handbooks with applications to multiscale problems. International Journal for Numerical Methods in Engineering, 60:1639–1672, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  41. N. Sukumar, D. Chopp, N. Moes, and T. Belytschko. Modeling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 190:6183–6200, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  42. N. Sukumar, N. Moes, B. Moran, and T. Belytschko. Extended finite element method for three-dimensional crack modelling. International Journal for Numerical Methods in Engineering, 48(11):1549–1570, 2000.

    Article  MATH  Google Scholar 

  43. B. Szabo and I. Babuška. Finite Element Analysis. John Wiley and Sons, New York, 1991.

    MATH  Google Scholar 

  44. L. Wang, F. W. Brust, and S. N. Atluri. The elastic-plastic finite element alternating method (EPFEAM) and the prediction of fracture under WFD conditions in aircraft structures. Computational Mechanics, 19:356–369, 1997.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Armando Duarte, C., Kim, DJ., Babuška, I. (2007). A Global-Local Approach for the Construction of Enrichment Functions for the Generalized FEM and Its Application to Three-Dimensional Cracks. In: Leitão, V.M.A., Alves, C.J.S., Armando Duarte, C. (eds) Advances in Meshfree Techniques. Computational Methods in Applied Sciences, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6095-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6095-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6094-6

  • Online ISBN: 978-1-4020-6095-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics