Skip to main content

T Cells and Antigen Recognition

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oltz E. Regulation of antigen receptor gene assembly in lymphocytes. Immunol Res 2001;23:121–133

    Article  PubMed  CAS  Google Scholar 

  2. Germain R. The biochemistry and cell biology of antigen presentation by MHC Class I and Class II molecules. Implications for development of combination vaccines. Ann NY Acad Sci 1995;754:114–125

    Article  PubMed  CAS  Google Scholar 

  3. Pulendran B. Modulating Th1/Th2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res 2004;29:187–196

    Article  PubMed  CAS  Google Scholar 

  4. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Alt Med Rev 2003;8:223–246

    Google Scholar 

  5. Brandes M, Williman K, Moser B. Professional antigen presentation function by human UPgammaδ T cells. Science 2005;309:264–268

    Article  PubMed  CAS  Google Scholar 

  6. Trombetta E, Mellman I. Cell biology of antigen processing in vitro and in vivo . Ann Rev Immunol 2005;23:975–1028

    Article  CAS  Google Scholar 

  7. Huang A, Qi H, Germain R. Illuminating the landscape of in vivo immunity: insights from dynamic in situ imaging of secondary lymphoid tissues. Immunity 2004;21:331–339

    PubMed  CAS  Google Scholar 

  8. Walker L, Abbas A. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2001;21:11–19

    Google Scholar 

  9. Morgan D, Kreuwel H, Fleck S etal. Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 1998;160:643–651

    PubMed  CAS  Google Scholar 

  10. Lui G, Fairchild P, Smith R etal. Low avidity antigen recognition of self antigen by T cells permits escape from central tolerance. Immunity 1995;3:407–415

    Article  Google Scholar 

  11. De Visser K, Cordaro T, Kessels H etal. Low avidity self-specific T cells display a pronounced expansion defect that can be overcome by altered peptide ligands. J Immunol 2001;167:3818–3828

    PubMed  Google Scholar 

  12. Lymann M, Nugent C, Marquardt K etal. The fate of low affinity tumor specific CD8+ T cells in tumor-bearing mice. J Immunol 2005;174:2563–2572

    Google Scholar 

  13. Hernandez J, Ko A, Sherman L. CTLA-4 blockade enhances the CTL responses to the p53 self-tumor antigen. J Immunol 2001;166:3908–3914

    PubMed  CAS  Google Scholar 

  14. Gross D-A, Graff-Dubois S, Opolon P etal. High vaccination efficiency of low affinity epitopes in antitumor immunotherapy. J Clin Invest 2004;113:425–433

    Article  PubMed  CAS  Google Scholar 

  15. Ercolini A, Ladle B, Manning E etal. Recruitment of latent pools of high aviditiy CD8+ T cells to the antitumor immune response. J Exp Med 2005; 201: 1591–1602.

    Article  PubMed  CAS  Google Scholar 

  16. Davis M, Boniface J, Rieich Z etal. Ligand recognition by UPalphaUPbeta T cell receptors. Ann Rev Immunol 1998;15:523–544

    Article  Google Scholar 

  17. Jameson J, Witherden D, Havran W. T cell effector mechanisms: gamma delta and CD1d-restricted subsets. Curr Opin Immunol 2003;15:349–353

    Article  PubMed  CAS  Google Scholar 

  18. Mani A, Gelmann E. The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 2005;23:4776–4789

    Article  PubMed  CAS  Google Scholar 

  19. Yewdell J, Schuburt U, Bennick J. At the crossroads of cell biology and immunology: DRiPs and other sources of peptide ligands for MHC Class I molecules. J Cell Sci 2001;114:845–851

    PubMed  CAS  Google Scholar 

  20. van den Eynde B, Morel S. Differential processing of Class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 2001;13:147–153

    Article  PubMed  Google Scholar 

  21. Morel S, Levy F, Burlet-Schiltz O etal. Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 2000;12:107–117

    Article  PubMed  CAS  Google Scholar 

  22. Sun Y, Sijts A, Song M etal. Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on melanoma cells. Cancer Res 2002;62:2875–2882

    PubMed  CAS  Google Scholar 

  23. Chen W, Norbury C, Cho Y etal. Immunoproteasomes shape immunodominance hierarchies of antiviral CD8+ T cells at the levels of T cell repertoire and presentation of viral antigens. J Exp Med 2001;193:1319–1326

    Article  PubMed  CAS  Google Scholar 

  24. Toes R, Nussbaum A, Degerman S etal. Discrete cleavage motifs of constitutive and immunoproteasomes revealed by quantitative analysis of cleavage products. J Exp Med 2001;194:1–12

    Article  PubMed  CAS  Google Scholar 

  25. Melief C. Regulation of cytotoxic T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming? Eur J Immunol 2003;33:2645–2654

    Article  PubMed  CAS  Google Scholar 

  26. Ackerman A, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nature Immunol 2004;5:678–684

    Article  CAS  Google Scholar 

  27. Heath W, Belz G, Behrens G etal. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004;199:9–26

    Article  PubMed  CAS  Google Scholar 

  28. Heath W, Carbone F. Cross-presentation in viral immunity and self-tolerance. Nature Rev Immunol 2001;1:126–134

    Article  CAS  Google Scholar 

  29. Bevan M. Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T cell level during in vivo priming. J Immunol 1976;117:2233–2238

    PubMed  CAS  Google Scholar 

  30. Bevan M. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 1976;143:1283–1288

    Article  PubMed  CAS  Google Scholar 

  31. Gooding L, Edwards C. H-2 antigen requirements in the in vitro induction of SV-40-specific cytotoxic T lymphocytes. J Immunol 1980;123:125801262.

    Google Scholar 

  32. Huang A, Golumbek P, Ahmdzadeh M etal. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994;264:961–965

    Article  PubMed  CAS  Google Scholar 

  33. Huang A, Bruce A, Pardoll D etal. In vivo cross-priming of MHC class I-restricted antigens requires TAP transporter. Immunity 1996;4:349–355

    Article  PubMed  CAS  Google Scholar 

  34. Thomas A, Santarsiero L, Lutz E etal. Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med 2004;200:297–306

    Article  PubMed  CAS  Google Scholar 

  35. Huppa J, Davis M. T cell antigen recognition and the immunological synapse. Nature Rev Immunol 2003;3:973–983

    Article  CAS  Google Scholar 

  36. Krogsgaard M, Davis M. How T cells ‘see’ antigen. Nature Immunol 2005;6:239–245

    Article  CAS  Google Scholar 

  37. Borg N, Ely L, Beddoe T etal. The CDR3 regions of an immunodominant T cell receptor dictate the ‘energetic landscape’ of peptide-MHC recognition. Nature Immunol 2005;6:171–180

    Article  CAS  Google Scholar 

  38. Reiser R, Gregoire C, Darnault C etal. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC Class I complex. Immunity 2002;16:345–354

    Article  PubMed  CAS  Google Scholar 

  39. Reiser R, Darnault C, Gregoire C etal. CDR3 loop flexibility contributes to the degeneracy of T cell recognition. Nature Immunol 2003;4:241–247

    Article  CAS  Google Scholar 

  40. Wu L, Tuot D, Lyons D etal. Two-step binding mechanism for T cell receptor recognition of peptide MHC. Nature 2002;418:553–556

    Article  CAS  Google Scholar 

  41. Zhao R, Collins E. Enhancing cytotoxic T cell responses with altered peptide ligands. Arch Immunol Ther Exp 2001; 49: 271–277.

    CAS  Google Scholar 

  42. Bakker A, van der Burg S, Huijbens R etal. Analogues of CTL epitopes with improved MHC Class I binding capacity elicit anti-melanoma CTL recognizing the wild-type epitope. Int J Cancer 1997;70:302–309

    Article  PubMed  CAS  Google Scholar 

  43. Dyall R, Bowne W, Weber L etal. Heteroclitic immunization induces tumor immunity. J Exp Med 1998;188: 1553–1561.

    Article  PubMed  CAS  Google Scholar 

  44. Overwijk W, Tsung A, Irvine K etal. pg100/pmel17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high affinity, altered peptide ligand. J Exp Med 1998;188:277–286

    Article  PubMed  CAS  Google Scholar 

  45. Valmori D, Fonteneau J, Valitutti S etal. Optimal activation of tumor-reactive T cells by selected antigenic peptide analogues. Int Immunol 1999;11:1971–1980

    Article  PubMed  CAS  Google Scholar 

  46. Slansky J, Rattis R, Boyd L etal. Enhanced antigen-specific immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 2000;13:529–538

    Article  PubMed  CAS  Google Scholar 

  47. Li Q-J, Dinner A, Qi S etal. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nature Immunol 2004;5:791–799

    Article  CAS  Google Scholar 

  48. Dustin M. Stop and go traffic to tune T cell responses. Immunity 2004;21:305–314

    Article  PubMed  CAS  Google Scholar 

  49. Huppa J, Gleimer M, Sumen C etal. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nature Immunol 2003;4(749–755).

    Article  CAS  Google Scholar 

  50. Egen J, Allison J. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002;16:23–35

    Article  PubMed  CAS  Google Scholar 

  51. Egen J, Kuhns M, Allison J. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunol 2002;3:611–618

    Article  CAS  Google Scholar 

  52. Stinchcombe J, Bossi G, Booth S etal. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 2001;15:751–761

    Article  PubMed  CAS  Google Scholar 

  53. McGavern D, Christen U, Oldstone M. Molecular anatomy of antigen-specific CD8+ T cell engagement and synapse formation in vivo. Nature Immunol 2002;3:918–925

    Article  CAS  Google Scholar 

  54. Kuhn J, Poenie M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 2002;16:111–121

    Article  PubMed  CAS  Google Scholar 

  55. Pardoll D. Spinning molecular immunology into successful immunotherapy. Nature Rev Immunol 2002;2:227–238

    Article  CAS  Google Scholar 

  56. Greenwald R, Freeman G, Sharpe A. The B7 family revisited. Ann Rev Immunol 2005;23:515–548

    Article  CAS  Google Scholar 

  57. McCoy K, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol 1999;77:1–10

    Article  PubMed  CAS  Google Scholar 

  58. Pentcheva-Hoang T, Egen J, Wojnoonski etal. B7–1 and B7–2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 2004;21:401–413

    Article  PubMed  CAS  Google Scholar 

  59. Khoury S, Sayegh M. The roles of the new negative T cell costimulatory pathways in regulating autoimmunity. Immunity 2004;20:529–538

    Article  PubMed  CAS  Google Scholar 

  60. McAdam A, Greenwald R, Levin M etal. ICOS is critical for CD40-mediated antibody class-switching. Nature 2001;409:102–105

    Article  PubMed  CAS  Google Scholar 

  61. Wallin J, Liang L, Bakardjiev A etal. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr Opin Immunol 2002;14:779–782

    Article  Google Scholar 

  62. Chapoval A, Ni J, Lau J etal. B7-H3: a costimulatory molecule for T cell activation and IFN- UPgamma production. Nature Immunol 2001;2:269–274

    Article  CAS  Google Scholar 

  63. Luo L, Chapoval A, Flies D etal. B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol 2004;173:5445–5450

    PubMed  CAS  Google Scholar 

  64. Sun X, Richards S, Prasad D etal. Mouse B7-H3 induces antitumor immunity. Gene Ther 2003;10:1728–1734

    Article  PubMed  CAS  Google Scholar 

  65. Suh W, Gajewska B, Okada H etal. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nature Immunol 2003;4:899–906

    Article  CAS  Google Scholar 

  66. Shin T, Kennedy G, Gorski K etal. Cooperative B7–1/2 (CD80/86) and B7-DC costimulation of CD4+ T cells independent of the PD-1 receptor. J Exp Med 2003;198:31–38

    Article  PubMed  CAS  Google Scholar 

  67. Tseng B, Otsuji M, Gorski K etal. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 2001;193:839–845

    Article  PubMed  CAS  Google Scholar 

  68. Liu X, Gao J, Wen J etal. B7-DC/PD-L2 promotes tumor immunity by a PD-1-independent mechanism. J Exp Med 2003;197:1721–1730

    Article  PubMed  CAS  Google Scholar 

  69. Freeman G, Long A, Iwai Y etal. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000;192:1027–1034

    Article  PubMed  CAS  Google Scholar 

  70. Latchman Y, Wood C, Chernova T etal. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunol 2001;2:261–268

    Article  CAS  Google Scholar 

  71. Dong H, Strome S, Salomao D etal. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med 2002;8:793–800

    PubMed  CAS  Google Scholar 

  72. Sica G, Choi I, Zhu G etal. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 2003;18:849–861

    Article  PubMed  CAS  Google Scholar 

  73. Watts T. TNF/TNFR family members in costimulation of T cell responses. Ann Rev Immunol 2005;23:23–68

    Article  CAS  Google Scholar 

  74. Tong A, Stone M. Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther 2002;10:1–13

    Article  CAS  Google Scholar 

  75. Yu P, Lee Y, Liu W etal. Priming of naive T cells inside tumors leads to eradication of established tumors. Nature Immunol 2004;5:141–149

    Article  CAS  Google Scholar 

  76. Hurwitz A, Yu T, Leach D, etal. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 1998;18:10067–10071

    Article  Google Scholar 

  77. van Elsas A, Hurwitz A, Allison J. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999;190:355–366

    Article  PubMed  Google Scholar 

  78. Hodi F, Mihm M, Soiffer R etal. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003;100:4712–4717

    Article  PubMed  CAS  Google Scholar 

  79. Phan G, Yang J, Sherry R etal. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003;100:8372–8377

    Article  PubMed  CAS  Google Scholar 

  80. Sanderson K, Scotland R, Lee P etal. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 2005;23:741–750

    Article  PubMed  CAS  Google Scholar 

  81. Radhakrishnan S, Nguyen L, Ciric B etal. Naturally occurring human IgM antibody that binds B7-DC and potentiates T cell stimulation by dendritic cells. J Immunol 2003;170:1830–1838

    PubMed  CAS  Google Scholar 

  82. Radhakrishnan S, Nguyen L, Ciric B etal. Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity. Cancer Res 2004;64:4965–4972

    Article  PubMed  CAS  Google Scholar 

  83. Curiel T, Wei S, Dong H etal. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Med 2003;9:562–567

    Article  PubMed  CAS  Google Scholar 

  84. Strome S, Dong H, Tamura H etal. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003;63:6501–6501

    PubMed  CAS  Google Scholar 

  85. Hirano F, Kaneko K, Tamura H etal. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005;65:1089–1096

    PubMed  CAS  Google Scholar 

  86. Melero I, Shuford W, Newby S etal. Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nature Med 1997;3:682–685

    Article  PubMed  CAS  Google Scholar 

  87. May K, Chen L, Zheng P etal. Anti-4–1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res 2002;62:3459–3465

    PubMed  CAS  Google Scholar 

  88. Ito F, Li Q, Shreiner A, Okuyama R etal. Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res 2004;64:8411–8419

    Article  PubMed  CAS  Google Scholar 

  89. Sugamura K, Ishii N, Weinberg A. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nature Rev Immunol 2004;4:420–431

    Article  CAS  Google Scholar 

  90. Bansal-Pakala P, Jember A, Croft M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nature Med 2001;7:907–912

    Article  PubMed  CAS  Google Scholar 

  91. Maxwell J, Weinberg A, Prell R etal. Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol 2000;164:107–112

    PubMed  CAS  Google Scholar 

  92. Takeda I, Ine S, Killeen N etal. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 2004;172:3580–3589

    PubMed  CAS  Google Scholar 

  93. Valzasina B, Guiducci C, Dislich H etal. Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 2005;105:2845–2851

    Article  PubMed  CAS  Google Scholar 

  94. Pan P, Zang Y, Weber K etal. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Molecular Ther 2002;6:528–536

    Article  CAS  Google Scholar 

  95. Gri G, Gallo E, Di Carlo E etal. OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-APC signaling to boost the host T cell antitumor response. J Immunol 2003;170:99–106

    PubMed  CAS  Google Scholar 

  96. Diehl L, den Boer A, van der Voort E etal. The role of CD40 in peripheral T cell tolerance and immunity. J Mol Med 2000;78:363–371

    Article  PubMed  CAS  Google Scholar 

  97. Sotomayor E, Borrello I, Tubb E etal. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med 1999;5:780–787

    Article  PubMed  CAS  Google Scholar 

  98. Bronte V, Serafini P, Mazzoni A etal. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 2003;24:301–305

    Article  CAS  Google Scholar 

  99. O’Garra A, Vierira P. Regulatory T cells and mechanisms of immune system control. Nature Med 2004;10:801–805

    Article  PubMed  CAS  Google Scholar 

  100. Onizuka S, Tawara I, Shimizu J etal. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999;59:3128–3133

    PubMed  CAS  Google Scholar 

  101. Sutmuller R, van Duivenvoorde L, van Elsas A etal. Synergism of cytotoxic T lymphocyte-associated antigen-4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. JExp Med 2001;194:824–832

    Google Scholar 

  102. Antony P, Piccirillo C, Akpinarli A etal. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. JImmunol 2005;174:2591–2601

    CAS  Google Scholar 

  103. Ferrone S, Finerty J, Jaffee E etal. How much longer will tumour cells fool the immune system? Immunol Today 2000;21:70–72

    Article  PubMed  CAS  Google Scholar 

  104. Wang T, Niu G, Kortylewski M etal. Regulation of the innate and adaptive immune responses by Stat-3-signaling in tumor cells. Nature Med 2004;10:48–54

    Article  PubMed  CAS  Google Scholar 

  105. Munn D, Mellor A. IDO and tolerance to tumors. Trends Mol Med 2004;10:15–18

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Emens, L.A. (2007). T Cells and Antigen Recognition. In: Kaufman, H.L., Wolchok, J.D. (eds) General Principles of Tumor Immunotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6087-8_3

Download citation

Publish with us

Policies and ethics