Skip to main content

Kinetics of Peroxiredoxins and their Role in the Decomposition of Peroxynitrite

  • Chapter
Peroxiredoxin Systems

Part of the book series: Subcellular Biochemistry ((SCBI,volume 44))

Abstract

Methodologies and results of studies on the kinetics of peroxiredoxins (Prx) are reviewed. Peroxiredoxins are broad-spectrum peroxidases that catalyze the reduction of H2o2, organic hydroperoxides and peroxynitrite by thiols. Their catalytic cycle starts with the oxidation of a particularly reactive cysteine residue (CP) to a sulfenic acid derivative by the peroxide substrate, the sulfenic acid then reacts with a thiol to form a disulfide, and the cycle is completed by thiol/disulfide exchange reactions that regenerate the ground-state enzyme. Depending on the subtype of peroxiredoxin, the thiol reacting with the primary oxidation product (E-SOH) may be a cysteine residue of a second subunit (typical 2-Cys Prx), a cysteine residue of the same subunit (atypical 2-Cys Prx) or reducing substrate (1-Cys Prx and at least one example of an atypical 2-Cys Prx). In a typical 2-Cys Prx the intra-subunit disulfide formation with the second “resolving” cysteine (CR) is mandatory for the reduction by the specific substrate, which is a protein characterized by a CXXC motif such as thioredoxin, tryparedoxin or AhpF. These consecutive redox reactions define the catalysis as an enzyme substitution mechanism, which is corroborated by a ping-pong pattern that is commonly observed in steady–state analyses, chemical identification of catalytic intermediates and stopped-flow analyses of partial reactions. More complex kinetic patterns are discussed in terms of cooperativity between the subunits of the oligomeric enzymes, generation of different oxidized intermediates or partial over-oxidation of CP to a sulfinic acid. Saturation kinetics is often not observed indicating that a typical complex between reduced enzyme and hydroperoxide is not formed and that, in these cases, formation of the complex between the oxidized enzyme and its reducing substrate is slower than the reaction within this complex. Working with sulphur catalysis, Prxs are usually less efficient than the heme- or selenium-containing peroxidases, but in some cases the k+1 values (bimolecular rate constant for oxidation of reduced E by ROOH) are comparable, the overall range being 2× 103-4× 107M-1 s-1 depending on the hydroperoxide and the individual Prx. For the reduction of peroxynitrite k+1 values of 1× 106 up to 7× 107 M-1s-1 have been measured. The net forward rate constants k +2 for the reductive part of the cycle range between 2× 104–1× 107 M-1s-1. These kinetic characteristics qualify the peroxiredoxins as moderately efficient devices to detoxify hydroperoxides, which is pivotal to organisms devoid of more efficient peroxidases, and as most relevant to the detoxification of peroxynitrite. In higher organisms, their specific role is seen in the regulation of signalling cascades that are modulated by H2o2, lipid hydroperoxides or peroxynitrite

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerman, S. E. and Müller, S., 2003, 2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. Mol. Biochem. Parasitol. 130: 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Akerman, S. E. and Müller, S., 2005, Peroxiredoxin-linked detoxification of hydroperoxides in Toxoplasma gondii. J. Biol. Chem. 280: 564–570.

    PubMed  CAS  Google Scholar 

  • Alvarez, B., Ferrer-Sueta, G., Freeman, B. A. and Radi, R., 1999, Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J. Biol. Chem. 274: 842–848.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, M. N., Trujillo, M. and Radi, R., 2002, Peroxynitrite formation from biochemical and cellular fluxes of nitric oxide and superoxide. Meth. Enzymol. 359: 353–366.

    Article  PubMed  CAS  Google Scholar 

  • Bachschmid, M., Schildknecht, S. and Ullrich, V., 2005, Redox regulation of vascular prostanoid synthesis by the nitric oxide-superoxide system. Biochem. Biophys. Res. Commun. 338: 536–542.

    Article  PubMed  CAS  Google Scholar 

  • Baker, L. M. and Poole, L. B., 2003, Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J. Biol. Chem. 278: 9203–9211.

    Article  PubMed  CAS  Google Scholar 

  • Baker, L. M., Raudonikiene, A., Hoffman, P. S. and Poole, L. B., 2001, Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J. Bacteriol. 183: 1961–1973.

    Article  PubMed  CAS  Google Scholar 

  • Barr, S. D. and Gedamu, L., 2003, Role of peroxidoxins in Leishmania chagasi survival. Evidence of an enzymatic defense against nitrosative stress. J. Biol. Chem. 278: 10816–10823.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Beckman, J. S., Estevez, A. G., Crow, J. P. and Barbeito, L., 2001, Superoxide dismutase and the death of motoneurons in ALS. Trends. Neurosci. 24: S15–20.

    Article  PubMed  CAS  Google Scholar 

  • Belik, J., Jankov, R. P., Pan, J. and Tanswell, A. K., 2004, Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat. Free Radic. Biol. Med. 37: 1384–1392.

    Article  PubMed  CAS  Google Scholar 

  • Biteau, B., Labarre, J. and Toledano, M. B., 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425: 980–984.

    Article  PubMed  CAS  Google Scholar 

  • Bohn, H., Schonafinger, K., 1989, Oxygen and oxidation promote the release of nitric oxide from sydnonimines. J. Cardiovasc. Pharmacol. 14 Suppl. 11:S6–12.

    PubMed  CAS  Google Scholar 

  • Bonini, M. G. and Augusto, O., 2001, Carbon dioxide stimulates the production of thiyl, sulfinyl, and disulfide radical anion from thiol oxidation by peroxynitrite. J. Biol. Chem. 276: 9749–9754.

    Article  PubMed  CAS  Google Scholar 

  • Boucher, I. W., McMillan, P. J., Gabrielsen, M., Akerman, S. E., Brannigan, J. A., Schnick, C., Brzozowski, A. M., Wilkinson, A. J. and Müller, S., 2006, Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum. Mol. Microbiol. 61: 948–959.

    Article  PubMed  CAS  Google Scholar 

  • Briviba, K., Kissner, R., Koppenol, W. H. and Sies, H., 1998, Kinetic study of the reaction of glutathione peroxidase with peroxynitrite. Chem. Res. Toxicol. 11: 1398–1401.

    Article  PubMed  CAS  Google Scholar 

  • Bryk, R., Griffin, P. and Nathan, C., 2000, Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Budanov, A. V., Sablina, A. A., Feinstein, E., Koonin, E. V. and Chumakov, P. M., 2004, Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304: 596–600.

    Article  PubMed  CAS  Google Scholar 

  • Budde, H., Flohé, L., Hecht, H. J., Hofmann, B., Stehr, M., Wissing, J. and Lünsdorf, H., 2003, Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei. Biol. Chem. 384: 619–633.

    Article  PubMed  CAS  Google Scholar 

  • Carnieri, E. G., Moreno, S. N. and Docampo, R., 1993, Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages. Mol. Biochem. Parasitol. 61: 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Castro, H., Budde, H., Flohé, L., Hofmann, B., Lunsdorf, H., Wissing, J. and Tomas, A. M., 2002, Specificity and kinetics of a mitochondrial peroxiredoxin of Leishmania infantum. Free Radic. Biol. Med. 33: 1563–1574.

    Article  PubMed  CAS  Google Scholar 

  • Castro, H., Sousa, C., Novais, M., Santos, M., Budde, H., Cordeiro-da-Silva, A., Flohé, L. and Tomas, A. M., 2004, Two linked genes of Leishmania infantum encode tryparedoxins localised to cytosol and mitochondrion. Mol. Biochem. Parasitol. 136: 137–147.

    Article  PubMed  CAS  Google Scholar 

  • Castro, L. A., Robalinho, R. L., Cayota, A., Meneghini, R. and Radi, R., 1998, Nitric oxide and peroxynitrite-dependent aconitase inactivation and iron-regulatory protein-1 activation in mammalian fibroblasts. Arch. Biochem. Biophys. 359: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Cowell, R. M. and Russell, J. W., 2004, Nitrosative injury and antioxidant therapy in the management of diabetic neuropathy. J. Investig. Med. 52: 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Chae, H. Z., Kim, H. J., Kang, S. W. and Rhee, S. G., 1999, Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res. Clin. Pract. 45: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Chang, T. S., Jeong, W., Woo, H. A., Lee, S. M., Park, S. and Rhee, S. G., 2004, Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279: 50994–51001.

    Article  PubMed  CAS  Google Scholar 

  • Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., Park, H. S., Kim, K. Y., Lee, J. S., Choi, C., Bae, Y. S., Lee, B. I., Rhee, S. G. and Kang, S. W., 2005, Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435: 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Dalziel, K., 1957, Initial steady state velocities in the evaluation of enzyme-substrate reaction mechanisms. Acta Chem. Scand. 11: 1706–1723.

    Article  CAS  Google Scholar 

  • Denicola, A., Souza, J. M. and Radi, R., 1998, Diffusion of peroxynitrite across erythrocyte membranes. Proc. Natl. Acad. Sci. USA 95: 3566–3571.

    Article  PubMed  CAS  Google Scholar 

  • Dubuisson, M., Vander Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R., Koppenol, W. H., Rees, J. F. and Knoops, B., 2004, Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett. 571: 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Sueta, G., Batinic-Haberle, I., Spasojevic, I., Fridovich, I. and Radi, R., 1999, Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants. Chem. Res. Toxicol. 12: 442–449.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Sueta, G., Quijano, C., Alvarez, B. and Radi, R., 2002, Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. Meth. Enzymol. 349: 23–37.

    Article  PubMed  CAS  Google Scholar 

  • Flohé, L.,1989, The selenoprotein glutathione pnkeroxidase. Johne Wiley & Sons, Inc. New York, pp 643–732.

    Google Scholar 

  • Flohé, L. and Brigelius-Flohé, 2001, Selenoproteins of the glutathione system. Selenium: Its molecular biology and role in human health. Hatfield. Boston/Dordrecht/London, Kluwer Academic Publishers, pp 157–178.

    Google Scholar 

  • Flohé, L., Budde, H., Bruns, K., Castro, H., Clos, J., Hofmann, B., Kansal-Kalavar, S., Krumme, D., Menge, U., Plank-Schumacher, K., Sztajer, H., Wissing, J., Wylegalla, C. and Hecht, H. J., 2002, Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch. Biochem. Biophys. 397: 324–335.

    Article  PubMed  CAS  Google Scholar 

  • Floris, R., Piersma, S. R., Yang, G., Jones, P. and Wever, R., 1993, Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase. Eur. J. Biochem. 215: 767–775.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y., Sies, H. and Lei, X. G., 2001, Opposite roles of selenium-dependent glutathione peroxidase-1 in superoxide generator diquat- and peroxynitrite-induced apoptosis and signaling. J. Biol. Chem. 276: 43004–43009.

    Article  PubMed  CAS  Google Scholar 

  • Gerasimov, O. V. and Lymar, S. V., 1999, The yield of hydroxyl radical from the decomposition of peroxynitrous acid. Inorg. Chem. 38: 4317–4321.

    Article  CAS  Google Scholar 

  • Glebska, J. and Koppenol, W. H., 2003, Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein and dihydrorhodamine. Free Radic. Biol. Med. 35: 676–682.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero, S. A., Lopez, J. A., Steinert, P., Montemartini, M., Kalisz, H. M., Colli, W., Singh, M., Alves, M. J. and Flohé, L., 2000, His-tagged tryparedoxin peroxidase of Trypanosoma cruzi as a tool for drug screening. Appl. Microbiol. Biotechnol. 53: 410–414.

    Article  PubMed  CAS  Google Scholar 

  • Hodges, G. R. and Ingold, K. U., 1999, Cage-escape of germinate radical pairs can produce peroxynitrite from peroxynitrite under a wide variety of experimetal conditions. J. Am. Chem. Soc. 121: 10695–10701s.

    Article  CAS  Google Scholar 

  • Hofmann, B., Hecht, H. J. and Flohé, L., 2002, Peroxiredoxins. Biol Chem 383: 347–364.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, A., 1972, Tryptophan fluorescence study of conformational transitions of the oxidized and reduced form of thioredoxin. J. Biol. Chem. 247: 1992–1998.

    PubMed  CAS  Google Scholar 

  • Jaeger, T., Budde, H., Flohé, L., Menge, U., Singh, M., Trujillo, M. and Radi, R., 2004, Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch. Biochem. Biophys. 423: 182–191.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, W., Cha, M. K. and Kim, I. H., 2000, Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family. J. Biol. Chem. 275: 2924–2930.

    Article  PubMed  CAS  Google Scholar 

  • Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H. and Beckman, J. S., 1992, Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 5: 834–842.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Hunt, J. A. and Groves, J. T., 1997, Rapid decomposition of peroxynitrite by manganese porphyrin-antioxidant redox couples. Bioinorg Med Chem Lett. 7: 2913–2918.

    Article  CAS  Google Scholar 

  • Linares, E., Giorgio, S., Mortara, R. A., Santos, C. X., Yamada, A. T. and Augusto, O., 2001, Role of peroxynitrite in macrophage microbicidal mechanisms in vivo revealed by protein nitration and hydroxylation. Free Radic. Biol. Med. 30: 1234–1242.

    Article  PubMed  CAS  Google Scholar 

  • Lymar, S. V. and Hurst, J. K., 1995, Rapid reaction between peroxynitrite ion and carbon dioxide: implications for biological activity. J. Am. Chem. Soc. 117: 8867–8868.

    Article  CAS  Google Scholar 

  • McCafferty, D. M., 2000, Peroxynitrite and inflammatory bowel disease. Gut 46: 436–9.

    Article  PubMed  CAS  Google Scholar 

  • Mills, G. C., 1957, Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J. Biol. Chem. 229: 189–197.

    PubMed  CAS  Google Scholar 

  • Montemartini, M., Nogoceke, E., Singh, M., Steinert, P., Flohé, L. and Kalisz, H. M., 1998, Sequence analysis of the tryparedoxin peroxidase gene from Crithidia fasciculata and its functional expression in Escherichia coli. J. Biol. Chem. 273: 4864–4871.

    Article  PubMed  CAS  Google Scholar 

  • Munhoz, D. C. and Netto, L. E., 2004, Cytosolic thioredoxin peroxidase I and II are important defenses of yeast against organic hydroperoxide insult: catalases and peroxiredoxins cooperate in the decomposition of H2O2 by yeast. J. Biol. Chem. 279: 35219–35227.

    Article  PubMed  CAS  Google Scholar 

  • Nausser, T. and Koppenol, W. H., 2002, The rate constant of the reaction of superoxide with nitrogen monoxide: approaching the diffusion limit. J. Phys. Chem. A 106: 4084–4086.

    Google Scholar 

  • Naviliat, M., Gualco, G., Cayota, A. and Radi, R., 2005, Protein 3-nitrotyrosine formation during Trypanosoma cruzi infection in mice. Braz. J. Med. Biol. Res. 38: 1825–1834.

    Article  PubMed  CAS  Google Scholar 

  • Nickel, C., Trujillo, M., Rahlfs, S., Deponte, M., Radi, R. and Becker, K., 2005, Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite. Biol. Chem. 386: 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • Nogoceke, E., Gommel, D. U., Kiess, M., Kalisz, H. M. and Flohé, L., 1997, A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol. Chem. 378: 827–836.

    Article  PubMed  CAS  Google Scholar 

  • Ogusucu, R., Rettori, D., Munhoz, D. C., Netto, L. E. S. and Augusto, O., 2007, Reactions of yeast cytosolic thioredoxin peroxidase I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic. Biol. Med. 42: 326–334.

    Article  PubMed  CAS  Google Scholar 

  • Oishi, P., Grobe, A., Benavidez, E., Ovadia, B., Harmon, C., Ross, G. A., Hendricks-Munoz, K., Xu, J., Black, S. M. and Fineman, J. R., 2006, Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb. Am. J. Physiol. Lung Cell. Mol. Physiol. 290: L359-L366.

    Article  PubMed  CAS  Google Scholar 

  • Pacher, P., Obrosova, I. G., Mabley, J. G. and Szabo, C., 2005, Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr. Med. Chem. 12: 267–275.

    PubMed  CAS  Google Scholar 

  • Parsonage, D., Youngblood, D. S., Sarma, G. N., Wood, Z. A., Karplus, P. A. and Poole, L. B., 2005, Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry 44: 10583–10592.

    Article  PubMed  CAS  Google Scholar 

  • Peshenko, I. V. and Shichi, H., 2001, Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic. Biol. Med. 31: 292–303.

    Article  PubMed  CAS  Google Scholar 

  • Peshenko, I. V., Singh, A. K. and Shichi, H., 2001, Bovine eye 1-Cys peroxiredoxin: expression in E. coli and antioxidant properties. J. Ocul. Pharmacol. Ther. 17: 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Peskin, A. V. and Winterbourn, C. C., 2001, Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic. Biol. Med. 30: 572–579.

    Article  PubMed  CAS  Google Scholar 

  • Quijano, C., Hernandez-Saavedra, D., Castro, L., McCord, J. M., Freeman, B. A. and Radi, R., 2001, Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J. Biol. Chem. 276: 11631–11638.

    Article  PubMed  CAS  Google Scholar 

  • Radi, R., 2004, Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci. USA 101: 4003–4008.

    Article  PubMed  CAS  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M. and Freeman, B. A., 1991, Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266: 4244–4250.

    PubMed  CAS  Google Scholar 

  • Radi, R., Denicola, A., Alvarez, B., Ferrer-Sueta, G. and Rubbo, H., 2000. The biological chemistry of peroxynitrite. Nitric Oxide Biology and Pathobiology. J. L. Ignarro. San Diego, Academic Press: 57–82.

    Google Scholar 

  • Rhee, S. G., 2006, Cell signaling. H2O2, a necessary evil for cell signaling. Science 312: 1882–1883.

    Article  PubMed  Google Scholar 

  • Rhee, S. G., Kang, S. W., Jeong, W., Chang, T. S., Yang, K. S. and Woo, H. A., 2005, Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17: 183–189.

    Article  PubMed  CAS  Google Scholar 

  • Rouhier, N., Gelhaye, E., Corbier, C. and Jacquot, J. P., 2004, Active site mutagenesis and phospholipid hydroperoxide reductase activity of poplar type II peroxiredoxin. Physiol. Plant 120: 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Rouhier, N., Gelhaye, E., Gualberto, J. M., Jordy, M. N., De Fay, E., Hirasawa, M., Duplessis, S., Lemaire, S. D., Frey, P., Martin, F., Manieri, W., Knaff, D. B. and Jacquot, J. P., 2004, Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol. 134: 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  • Sayed, A. A. and Williams, D. L., 2004, Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni. J. Biol. Chem. 279: 26159–26166.

    Article  PubMed  CAS  Google Scholar 

  • Seo, M. S., Kang, S. W., Kim, K., Baines, I. C., Lee, T. H. and Rhee, S. G., 2000, Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275: 20346–20354.

    Article  PubMed  CAS  Google Scholar 

  • Sies, H. and Masumoto, H., 1997, Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol. 38: 229–246.

    Article  PubMed  CAS  Google Scholar 

  • Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M. and Ischiropoulos, H., 2000, Dityrosine cross-linking promotes formation of stable alpha -synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 275: 18344–18349.

    Article  PubMed  CAS  Google Scholar 

  • Souza, J. M. and Radi, R., 1998, Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite. Arch. Biochem. Biophys. 360: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, P., Plank-Schumacher, K., Montemartini, M., Hecht, H. J. and Flohé, L., 2000, Permutation of the active site motif of tryparedoxin 2. Biol. Chem. 381: 211–219.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, C., 2003, Multiple pathways of peroxynitrite cytotoxicity. Toxicol. Lett. 140–141: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Szajewski, R. P. and Whiteside, G. M., 1980, Rate constants and equilibrium comstants for thiol-disulfide interchange reactions involving oxidized glutathione. J. Am. Chem. Soc. 102: 2011–2026.

    Article  CAS  Google Scholar 

  • Touyz, R. M., 2005, Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid. Redox Signal 7: 1302–1314.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo, M., Budde, H., Pineyro, M. D., Stehr, M., Robello, C., Flohè, L. and Radi, R., 2004, Trypanosoma brucei and Trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols. J. Biol. Chem. 279: 34175–34182.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo, M., Mauri, P., Benazzi, L., Comini, M., De Palma, A., Flohè, L., Radi, R., Stehr, M., Singh, M., Ursini, F. and Jaeger, T., 2006, The mycobacterial thioredoxin peroxidase can act as a one-cysteine-peroxiredoxin. J. Biol. Chem. 281: 20555–20566.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo, M. and Radi, R., 2002, Peroxynitrite reaction with the reduced and the oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. Arch. Biochem. Biophys. 397: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Wong, C. M., Zhou, Y., Ng, R. W., Kung Hf, H. F. and Jin, D. Y., 2002, Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. J. Biol. Chem. 277: 5385–5394.

    Article  PubMed  CAS  Google Scholar 

  • Woo, H. A., Chae, H. Z., Hwang, S. C., Yang, K. S., Kang, S. W., Kim, K. and Rhee, S. G., 2003, Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300: 653–656.

    Article  PubMed  CAS  Google Scholar 

  • Woo, H. A., Jeong, W., Chang, T. S., Park, K. J., Park, S. J., Yang, J. S. and Rhee, S. G., 2005, Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J. Biol. Chem. 280: 3125–3128.

    Article  PubMed  CAS  Google Scholar 

  • Wood, Z. A., Poole, L. B. and Karplus, P. A., 2003, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650–653.

    Article  PubMed  CAS  Google Scholar 

  • Wood, Z. A., Schröder, E., Harris, J. R. and Poole, L. B., 2003, Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32–40.

    Article  PubMed  CAS  Google Scholar 

  • Wrona, M., Patel, K. and Wardman, P., 2005, Reactivity of 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic. Biol. Med. 38: 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Yang, K. S., Kang, S. W., Woo, H. A., Hwang, S. C., Chae, H. Z., Kim, K. and Rhee, S. G., 2002, Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277: 38029–38036.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Trujillo, M., Ferrer-Sueta, G., Thomson, L., Flohé, L., Radi, R. (2007). Kinetics of Peroxiredoxins and their Role in the Decomposition of Peroxynitrite. In: Flohé, L., Harris, J.R. (eds) Peroxiredoxin Systems. Subcellular Biochemistry, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6051-9_5

Download citation

Publish with us

Policies and ethics