Skip to main content

Introduction

History of the peroxiredoxins and topical perspectives

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 44))

Abstract

We have surveyed the early biochemical, structural and enzymatic studies on the peroxiredoxin family, within the broad context of the other chapters included within this book. Both the antioxidant defence and peroxide-linked cell signalling roles of the peroxiredoxins are introduced. The possible membrane-association of certain peroxiredoxins is assessed and the structural characterization of the peroxiredoxins by electron microscopy is given some emphasis here. The important contribution of X-ray crystallographic studies to the understanding of peroxiredoxin structure is given due attention. Finally, some medical perpectives are introduced, with emphasis upon the understanding of the microbial peroxiredoxins as possible future drug targets

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D.W., Cadman, S., 1979, Calcium-induced erythrocyte membrane changes. The role of adsorption of cytosol proteins and proteases. Biochim. Biophys. Acta 551: 1–9.

    PubMed  CAS  Google Scholar 

  • Aslan, M., Ozben, T., 2003, Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxid. Redox Signal 5: 781–788.

    PubMed  CAS  Google Scholar 

  • Baker, L.M., Poole, L.B., 2003, Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J. Biol. Chem. 278: 9203–9211.

    PubMed  CAS  Google Scholar 

  • Baker, L.M, Raudonikiene, A., Hoffman, P.S., Poole, L.B., 2001, Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J. Bacteriol. 183: 1961–1973.

    PubMed  CAS  Google Scholar 

  • Banning, A., Deubel, S., Kluth, D., Zhou, Z., Brigelius-Flohé, R., 2005, The GI-GPx gene is a target for Nrf2. Mol. Cell. Biol. 25: 4914–4923.

    PubMed  CAS  Google Scholar 

  • Becker, K., Rahlfs, S., Nickel, C., Schirmer, R.H., 2003, Glutathione–functions and metabolism in the malarial parasite Plasmodium falciparum. Biol. Chem. 384: 551–566.

    PubMed  CAS  Google Scholar 

  • Bozonet, S.M, Findlay, V.J., Day, A.M., Cameron, J., Veal, E.A., Morgan, B.A., 2005. Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J Biol Chem. 280: 23319–23327.

    PubMed  CAS  Google Scholar 

  • Brigelius-Flohé, R., Banning, A., Kny, M., Bol, G.F., 2004, Redox events in interleukin-1 signaling. Arch. Biochem. Biophys. 423: 66–73.

    PubMed  Google Scholar 

  • Brigelius, R., 1985, Mixed didulfides: biological functions and increase in oxidative Stress. Academic Press, London, Orlando, San Diego, New York, Toronto, Montreal, Sydney, Tokyo.

    Google Scholar 

  • Bryk, R., Griffin, P., Nathan, C., 2000, Peroxynitrite reductase activity of bacterial perioxiredoxins. Nature 407: 211–215.

    PubMed  CAS  Google Scholar 

  • Bryk, R., Lime, C.D., Erdjument-Bromage, H., Tempst, P., Nathan, C., 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 1073–1077

    PubMed  CAS  Google Scholar 

  • Budde, H., Flohé, L., Hecht, H.-J., Hofmann, B., Stehr, M., Wissing, J., Lûnsdorf, H., 2003, Kinetics and redox-sensitive oligomerization reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei. Biol. Chem. 384: 619–633.

    CAS  Google Scholar 

  • Cao, Z., Roszak, A.W., Gourlay, L.J., Lindsay, J.G., Isaacs N.W., 2005, Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. Structure 13: 1661–1664.

    PubMed  CAS  Google Scholar 

  • Carnieri, E.G., Moreno, S.N., Docampo, R., 1993, Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages. Mol. Biochem. Parasitol. 61: 79–86.

    PubMed  CAS  Google Scholar 

  • Castro, H., Sousa, C., Santos, M., Cordeiro-da-Silva, A., Flohé, L., Tomas, A.M., 2002, Complementary antioxidant defence by cytoplasmic and mitochondrial peroxiredoxins in Leishmania infantum. Free Radic. Biol. Med. 33: 1552–1562.

    PubMed  CAS  Google Scholar 

  • Cha, M.-K., Kim, I.-H., 1995, Thioredoxin-linked peroxidase from human red blood cell: Evidence for the existence of thioredoxin and thioredoxin reductase in human red blood cell. Biochem. Biophys. Res. Commun. 217: 900–907.

    PubMed  CAS  Google Scholar 

  • Cha, M-K., Yin, C.-H. Kim, I.-H., 2000, Interaction of human thiol-specific antioxidant protein I with erythrocyte plasma membrane. Biochemistry 39: 6944–6950.

    PubMed  CAS  Google Scholar 

  • Chae, H.Z, Chung, S,J., Rhee, S.G., 1994a, Thioredoxin-dependent peroxide reductase from yeast. J. Biol. Chem. 269: 27670–27678.

    CAS  Google Scholar 

  • Chae, H.Z., Rhee, S.G., 1994, A thiol-specific antioxidant and sequence homology to various proteins of unknown function. Biofactors 4: 177–180.

    PubMed  CAS  Google Scholar 

  • Chae, H.Z., Uhm, T.B., Rhee, S.G., 1994c, Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc. Natl. Acad.Sci. USA 91: 7022–7026.

    CAS  Google Scholar 

  • Chae, H.Z., Kim, I.H., Kim, K., Rhee, S.G., 1993, Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J. Biol. Chem. 268: 16815–16821.

    PubMed  CAS  Google Scholar 

  • Chae, H.Z., Robison, K,. Poole, L.B., Church, G., Storz, G., Rhee, S.G., 1994b, Cloning and sequencing of thiol-specific antioxidant from mammalian brain: Alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91: 7017–7021.

    CAS  Google Scholar 

  • Choi, H.-J., Kang, S.W., Yang, C.-H., Rhee, S.G., Ryu, S.-E., 1998, Crystal structure of a novel human peroxidase enzyme at 2.0 Å resolution. Nature Struct. Biol. 5: 400–406.

    PubMed  CAS  Google Scholar 

  • Choi, M.-H., Sajed, D., Poole, L., Hirata, K., Herdman, S., Torian, B.E., Reed, S.L., 2005, An unusual surface peroxiredoxin protects invasive Entamoeba histolytica from oxidant attack. Mol. Biochem. Parasitol. 143: 80–89.

    PubMed  CAS  Google Scholar 

  • Christman, M.F., Storz, G., Ames, B.N., 1989, OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella typhimurium, is homologous to a family of bacterial regulatory proteins. Proc. Natl.Acad. Sci. USA 86: 3484–3488.

    PubMed  CAS  Google Scholar 

  • Comini, M., Menge, U., Wissing, J., Flohé, L., 2005, Trypanothione synthesis in Crithidia revisited. J. Biol.Chem. 280: 6850–6860.

    PubMed  CAS  Google Scholar 

  • Comini, M.A., Guerrero, S.A., Haile, S., Menge, U., Lünsdorf, H., Flohé, L., 2004, Validation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic. Biol. Med. 36: 1289–1302.

    PubMed  CAS  Google Scholar 

  • Czech. M.P., Lawrence. J.C. Jr., Lynn. W.S., 1974, Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc. Natl. Acad. Sci. USA 71: 4173–4177.

    PubMed  CAS  Google Scholar 

  • Declercq. J.-P., Evrard, C., Clippe. A., van der Stricht. D., Bernard. A., Knoops, B., 2001, Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 Å resolution. J. Mol. Biol. 311: 751–759.

    PubMed  CAS  Google Scholar 

  • Dormeyer, M., Reckenfelderbäumer, N., Lüdemann, H., Krauth-Siegel, R.L., 2001, Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase. J. Biol. Chem. 276: 10602–10606.

    PubMed  CAS  Google Scholar 

  • Dumas, C., Ouellette, M., Tovar, J., Cunningham, M.L., Fairlamb, A.H., Tamar, S., Olivier, M., Papadopoulou, B., 1997, Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J. 16: 2590–2598.

    PubMed  CAS  Google Scholar 

  • Eling, T.E., Glasgow, W.C., 1994, Cellular proliferation and lipid metabolism: importance of lipoxygenases in modulating epidermal growth factor-dependent mitogenesis. Cancer Metastasis Rev. 13: 397–410.

    PubMed  CAS  Google Scholar 

  • Ellis, H.R., Poole, L.B., 1997, Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36:15013–15018.

    PubMed  CAS  Google Scholar 

  • Evrard, C., Capron, A., Marchand, C., Clippe, A., Wattiez, R., Soumillon, P., Knoops, B., Declercq, J.-P., 2004, Crystal structure of a dimeric oxidized form of human peroxiredoxin 5. J. Mol. Biol. 337: 1079–1090.

    PubMed  CAS  Google Scholar 

  • Fairlamb, A., 2003, Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol. 19: 488–494.

    PubMed  CAS  Google Scholar 

  • Fairlamb. A.H., Cerami. A., 1992, Metabolism and functions of trypanothione in the Kinetoplastida. Ann. Rev. Microbiol. 46: 695–729.

    CAS  Google Scholar 

  • Finkel, T., 2000, Redox-dependent signal transduction. FEBS Lett. 476: 52–54.

    PubMed  CAS  Google Scholar 

  • Fischer. E.H., 1997, Cellular regulation by protein phosphorylation: a historical overview. Biofactors 6: 367–374.

    PubMed  CAS  Google Scholar 

  • Fisher. A.B., Dodia. C., Manevich. Y., Chen. J.W., Feinstein. S.I., 1999, Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J. Biol. Chem. 274: 21326–21334.

    PubMed  CAS  Google Scholar 

  • Flohé. L., 1998, The Achilles’ heel of trypanosomatids: trypanothione-mediated hydroperoxide metabolism. Biofactors 8: 87–91.

    PubMed  Google Scholar 

  • Flohé. L., 1989, The selenoprotein glutathione peroxidase. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Flohé. L., Andreesen. J.R., Brigelius-Flohé. R., Maiorino. M., Ursini. F., 2000, Selenium, the element of the moon, in life on earth. IUBMB Life 49: 411–420.

    PubMed  Google Scholar 

  • Flohé L., Brigelius-Flohé R., 2006, Selenoproteins of the glutathione system. Kluwer Academic Publishers, Boston, Dordrecht, London.

    Google Scholar 

  • Flohé, L., Brigelius-Flohé, R., Saliou, C., Traber, M.G., Packer, L., 1997, Redox regulation of NF-kappa B activation. Free Radic. Biol. Med. 22: 1115–1126.

    PubMed  Google Scholar 

  • Flohé, L., Budde, H., Bruns, K., Castro, H., Clos, J., Hofmann, B., Kansal-Kalavar, S., Krumme, D., Menge, U., Plank-Schumacher, K., Sztajer, H., Wissing., Wylegalla, C., Hecht, H.J., 2002, Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch. Biochem. Biophys. 397: 324–335.

    PubMed  Google Scholar 

  • Flohé, L., Hecht, H.J., Steinert, P., 1999, Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic. Biol. Med. 27: 966–984.

    PubMed  Google Scholar 

  • Gao, L., Tse, S.-W., Conrad, C., Andreadis, A., 2005, Saitohin, which is nested in the tau locus and confers allele-specific susceptibility to several neurodegenerative diseases, interacts with peroxiredoxin 6. J. Biol.Chem. 280: 39268–39272.

    PubMed  CAS  Google Scholar 

  • Gommel, D.U., Nogoceke, E., Morr, M., Kiess, M., Kalisz, H.M., Flohé, L., 1997, Catalytic characteristics of tryparedoxin. Eur. J. Biochem. 248: 913–918.

    PubMed  CAS  Google Scholar 

  • Gourlay, L.J., Bhella, D., Kelly, S.M., Price, N.C. Lindsay, J.G., 2003, Structure-function analysis of recombinant substrate protein 22 kDa (SP-22). J. Biol. Chem. 278: 32631–32637.

    PubMed  CAS  Google Scholar 

  • Griendling, K.K., Ushio-Fukai, M., 2000, Reactive oxygen species as mediators of angiotensin II signaling. Regul. Pept. 91: 1–27.

    Google Scholar 

  • Harris, J.R., 1968, Release of a macromolecular protein component from human erythrocyte ghosts. Biochim. Biophys. Acta 150: 534–537.

    PubMed  CAS  Google Scholar 

  • Harris, J.R., 1969, Some negative staining features of a protein from erythrocyte ghosts. J. Mol. Biol. 46: 329–335.

    PubMed  CAS  Google Scholar 

  • Harris, J.R., 1971, Further studies on the proteins released from haemoglobin-free erythrocyte ghosts at low ionic strength. Biochim. Biophys. Acta 229: 761–770.

    PubMed  CAS  Google Scholar 

  • Harris, J.R., 1980, Torin and Cylindrin, two extrinsic proteins of the erythrocyte membrane: a review. Nouv. Rev. Fr. Hematol. 22: 411–448.

    PubMed  CAS  Google Scholar 

  • Harris, J.R., Bhella, D., Adrian, M., 2006. Recent developments in negative staining for transmission electron microscopy. Microscopy and Analysis, Issue 101, May, pp. 17–21.

    Google Scholar 

  • Harris, J.R., Naeem, I., 1978, The subunit composition of two high molecular weight extrinsic proteins from human erythrocyte membranes. Biochim. Biophys. Acta 537: 495–500.

    PubMed  CAS  Google Scholar 

  • Harris, J.R., Schröder, E., Isupov, M.N., Scheffler, D., Kristensen, P., Littlechild, J.A., Vagin A.A., Meissner U., 2001, Comparison of the decameric structure of peroxiredoxin-II by transmission electron microscopy and X-ray crystallography. Biochim. Biophys. Acta 1547: 221–234.

    PubMed  CAS  Google Scholar 

  • Harris, J.R., Scheffler, D., 2002, Routine preparation of air-dried negatively stained specimens and unstained specimens on holey carbon support films: a review of applications. Micron 33: 461–480.

    PubMed  Google Scholar 

  • Heffetz, D., Bushkin, I., Dror, R., Zick, Y., 1990, The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells. J. Biol. Chem. 265: 2896–2902.

    PubMed  CAS  Google Scholar 

  • Henderson, G.B., Fairlamb, A.H., Cerami, A., 1987, Trypanothione dependent peroxide metabolism in Crithidia fasciculata and Trypanosoma brucei. Mol. Biochem. Parasitol. 24: 39–45.

    PubMed  CAS  Google Scholar 

  • Hirota, K., Murata, M., Sachi, Y., Nakamura, H., Takeuchi, J., Mori, K., Yodoi, J., 1999, Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J. Biol. Chem. 274: 27891–27897.

    PubMed  CAS  Google Scholar 

  • Hirotsu, S., Abe, Y., Okada, K., Nagahara, N., Hori, H., Nishino, T., Hakoshima, T., 1999, Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23kDa/proliferation-associated gene product. Proc.Natl. Acad. Sci. USA 96: 12333–12338.

    PubMed  CAS  Google Scholar 

  • Hofmann, B., Hecht, H.J., Flohé, L., 2002, Peroxiredoxins. Biol. Chem. 383: 347–364.

    PubMed  CAS  Google Scholar 

  • Hungyi, S., Kim, A.T., Hedrick, C.C., Lusis, A.J., Tompkins, C., Finney, R., Leung, D.W., Paglia, D.E., 1997, Endogenous natural killer enhancing factor-B increases cellular resistance to oxidative stresses. Free Rad. Biol. Med. 22: 497–507.

    Google Scholar 

  • Immenschuh, S., Iwahara, S., Satoh, H., Nell, C., Katz, N., Müller-Eberhard, U., 1995, Expression of the mRNA of heme-binding protein 23 is coordinated with that of heme oxygenase-1 by heme and heavy metals in primary rat hepatocytes and hepatoma cells. Biochemistry 34: 13407–13411.

    PubMed  CAS  Google Scholar 

  • Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., Yamamoto, M., 1999, Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Devel. 13: 76–86.

    PubMed  CAS  Google Scholar 

  • Iwahara, S., Satoh, H., Song, D.X., Webb, J., Burlingame, A.L., Nagae, Y., Müller-Eberhard, U., 1995, Purification, characterization, and cloning of a heme-binding protein (23kDa) in rat liver cytosol. Biochemistry 34: 13398–13406.

    PubMed  CAS  Google Scholar 

  • Jacob, H.S., Jandl, J.H., 1966, Effects of sulfhydryl inhibition on red blood cells. 3. Glutathione in the regulation of the hexose monophosphate pathway. J. Biol. Chem. 241: 4243–4250.

    PubMed  CAS  Google Scholar 

  • Jacobson, F.S., Morgan, R.W., Christman, M.F., Ames, B.N., 1989, An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J. Biol. Chem. 264: 1488–1496.

    PubMed  CAS  Google Scholar 

  • Jaeger, T., Budde, H., Flohé, L., Menge, U., Singh, M., Trujillo, M., Radi, R., 2004, Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch. Biochem. Biophys. 423: 182–191.

    PubMed  CAS  Google Scholar 

  • Jaeger, T., Flohé, L., 2006, The thiol-based redox network of pathogens as target in the search for new drugs. BioFactors 27: 109–120.

    PubMed  Google Scholar 

  • Jäschke, A., Mi, H., Tropschug, M., 1998, Human T cell cyclophilin18 binds to thiol-specific antioxidant protein Aop1 and stimulates its activity. J. Mol. Biol. 277: 763–769.

    PubMed  Google Scholar 

  • Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., Choi, Y.O., Kim, W.Y., Kang, J.S., Cheong, C.-W., Yun, D.-J., Rhee, S.G., Cho, M.J., Lee, S.Y., 2004, Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625–635.

    PubMed  CAS  Google Scholar 

  • Jenney, F.E. Jr., Verhagen, M.F., Cui, X., Adams, M.W., 1999. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286: 306–309.

    PubMed  CAS  Google Scholar 

  • Jeon, S.-J., Ishikawa, K., 2003, Characterization of novel hexadecameric thioredoxin peroxidase from Aeropyrum perinix K1*. J. Biol. Chem. 278: 24174–24180.

    PubMed  CAS  Google Scholar 

  • Kato, H., Asanoi, M., Nakazawa, T., Maruyama, K., 1985, Cylinder protein isolated from rat liver mitochondria. Zool. Sci. 2: 485–490.

    CAS  Google Scholar 

  • Kawai, S., Takeshita, S., Okazaki, M., Kikuno, R., Kudo, A., Amann, E., 1994, Cloning and characterization of OSF-3, a new member of the MER5 family, expressed in mouse osteoblastic cells. J. Biochem. 115: 641–643.

    PubMed  CAS  Google Scholar 

  • Kim, K., Kim, I.H., Lee, K.Y., Rhee, S.G., Stadtman, E.R., 1988, The isolation and purification of a specific ‘‘protector’’ protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J. Biol. Chem. 263: 4704–4711.

    PubMed  CAS  Google Scholar 

  • Kim, S.H., Fountoulakis, M., Cairns, N., Lubec, G., 2001, Protein levels in human peroxiredoxin subtypes in brains of patients with Alzheimer’s disease and Down syndrome. J. Neural Transm. Suppl 61: 223–235.

    PubMed  Google Scholar 

  • Kitano, K., Niimura, Y., Nishiyama, Y., Miki, K., 1999, Stimulation of peroxidase activity by decamerization relation to ionic strength: AhpC protein from Amphibacillus xylanus. J. Biochem. 126: 313–319.

    PubMed  CAS  Google Scholar 

  • Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., Lubec, G., 2003, Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Res. 967: 152–160.

    PubMed  CAS  Google Scholar 

  • Krauth-Siegel, R.L., Meiering, S.K., Schmidt, H., 2003, The parasite-specific trypanothione metabolism of trypanosoma and leishmania. Biol. Chem. 384: 539–549.

    PubMed  CAS  Google Scholar 

  • Krieger, S., Schwarz, W., Ariyanayagam, M.R., Fairlamb, A.H., Krauth-Siegel, R.L., Clayton, C., 2000, Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol. Microbiol. 35: 542–552.

    PubMed  CAS  Google Scholar 

  • Kristensen, P., Rasmussen, D.E., Kristensen, B.I., 1999, Properties of thiol-specific anti-oxidant protein or calpromotin in solution. Biochem. Biophys. Res. Commun. 262: 127–131.

    PubMed  CAS  Google Scholar 

  • Leavey, P.J., Gonzalez-Aller, C., Thurman, G., Kleinberg, M., Rinckel, L., Ambrusso, D.W., Freeman, S., Kuypers, F.A., Ambrusso, D.R., 2002, A 29-kDa protein associated with p67phox expresses both peroxiredoxin and phospholipase A2 activity and enhances superoxide anion production by a cell-free system of NADPH oxidase activity. J.Biol. Chem. 277: 45181–45187.

    PubMed  CAS  Google Scholar 

  • Lee, S.P., Hwang, Y.S., Kim, Y.J., Kwon, K.S., Kim, H.J., Kim, K., Chae, H.Z., 2001, Cyclophilin A binds to peroxiredoxins and activates its peroxidase activity. J Biol Chem 276: 29826–29832.

    PubMed  CAS  Google Scholar 

  • Lee, T.H., Kim, S.U., Yu, S.L., Kim, S.H., Park, do S., Moon, H.B., Dho, S.H., Kwon, K.S., Kwon, H.J., Han, Y.H., Jeong, S., Kang, S.W., Shin, H.S., Lee, K.K., Rhee, S.G., Yu, D.Y., 2003, Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101: 5033–5038.

    PubMed  CAS  Google Scholar 

  • Levick, M.P., Tetaud, E., Fairlamb, A.H., Blackwell, J.M., 1998, Identification and characterisation of a functional peroxidoxin from Leishmania major. Mol. Biochem. Parasitol. 96: 125–137.

    PubMed  CAS  Google Scholar 

  • Li, S., Peterson, N.A., Kim, M.-Y., Kim, C.-Y., Hung, L.-W., Yi, M., Lekin, T., Segelke, B.W., Lott, J.S., Baker, E.N., 2005, Crystal structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin. J. Mol.Biol. 346: 1035–1046.

    PubMed  CAS  Google Scholar 

  • Lim, Y.S., Cha, M.K., Kim, H.K., Uhm, T.B., Park, J.W., Kim, K., Kim, I.H., 1993, Removal of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochem. Biophys. Res. Commun. 192: 273–280.

    PubMed  CAS  Google Scholar 

  • Lim, M.J., Chae, H.Z., Rhee, S.G., Yu, D.Y., Lee, K.K., Yeom, Y.I., 1998, The type II peroxiredoxin gene family of the mouse: molecular structure, expression and evolution. Gene 216: 197–205.

    PubMed  CAS  Google Scholar 

  • Lim, Y.S., Cha, M.K., Kim, H.K., Kim, I.H., 1994a, The thiol-specific antioxidant protein from human brain: gene cloning and analysis of conserved cysteine regions. Gene 140: 279–284.

    CAS  Google Scholar 

  • Lim, Y.-S., Cha, M.K., Yun, C.-H., Kim, H.-K., Kim, K., Kim, I.-H., 1994b, Purification and characterization of thiol-specific antioxidant protein from human red blood cell: a new type of antioxidant protein. Biochem. Biophys. Res. Commun. 199: 199–206.

    CAS  Google Scholar 

  • Lopez, J.A., Carvalho, T.U., de Souza,W., Flohé, L., Guerrero, S.A., Montemartini, M., Kalisz, H.M., Nogoceke, E., Singh, M., Alves, M.J., Colli W., 2000, Evidence for a trypanothione-dependent peroxidase system in Trypanosoma cruzi. Free Radic. Biol. Med. 28: 767–772.

    PubMed  CAS  Google Scholar 

  • Lüdemann, H., Dormeyer, M., Sticherling, C., Stallmann, D., Follmann, H., Krauth-Siegel, R.L., 1998, Trypanosoma brucei tryparedoxin, a thioredoxin-like protein in African trypanosomes. FEBS Lett. 431: 381–385.

    PubMed  Google Scholar 

  • Manevich, Y., Feinstein, S.I., Fisher, A.B., 2004. Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc. Natl. Acad. Sci. USA 10: 3780–3785.

    Google Scholar 

  • Maulik, N., Das, D.K., 2002, Redox signaling in vascular angiogenesis. Free Radic. Biol. Med. 33: 1047–1060.

    PubMed  CAS  Google Scholar 

  • Marianayagam, N.J., Sunde, M., Matthews, J.M., 2004, The power of two: protein dimerization in biology. TIBS 29: 618–625.

    PubMed  CAS  Google Scholar 

  • May, J.M., de Haen, C., 1979a, The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J. Biol. Chem. 254: 9017–9021.

    CAS  Google Scholar 

  • May, J.M., de Haen, C., 1979b, Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J. Biol. Chem. 254: 2214–2220.

    CAS  Google Scholar 

  • Meissner, U., Schröder, E., Scheffler, D., Martin, A.G., Harris, J.R., 2007, Formation, TEM study and 3D Reconstruction of the Human Erythrocyte Peroxidredoxin-2 Dodecahedral Higher-order Assembly. Micron 38: 29–39.

    PubMed  CAS  Google Scholar 

  • Mizohata, E., Sakai, H., Fusatomi, E., Terada, T., Murayama, K., Shorouzu, M., Yokoyama, S., 2005, Crystal structure of an archeal peroxiredoxin from the aerobic hypothermic crenarchaeon Aeropyrum perixK1. J. Mol. Biol. 354: 317–329.

    PubMed  CAS  Google Scholar 

  • Moore, R.B., Plishker, G.A., Shriver, S.K., 1990, Purification and measurement of calpromotin, the cytoplasmic protein which activates calcium-dependent potassium transport. Biochem. Biophys. Res. Commun. 166: 146–153.

    PubMed  CAS  Google Scholar 

  • Moore, R.B., Mankad, M.V., Shriver, S.K., Mankad, V.N., Plishker, G.A., 1991, Reconstitution of Ca(2+)-dependent K+transport in erythrocyte membrane vesicles requires a cytoplasmic protein. J. Biol. Chem. 266: 18964–18968.

    PubMed  CAS  Google Scholar 

  • Moore, R.B., Shriver S.K., Jenkins L.D., Mankad V.N., Shah A.K., Plishker G.A., 1997, Calpromotin, a cytoplasmic protein, is associated with the formation of dense cells in sickle cell anemia. Amer. J. Hematol. 56: 100–106.

    CAS  Google Scholar 

  • Moore, R.B., Shrivner, S.K., 1997, Protein 7.2b of human erythrocyte membranes binds to calpromotin. Biochem. Biophys. Res. Commun. 232: 294–297.

    PubMed  CAS  Google Scholar 

  • Mukherjee, S.P., Lynn, W.S., 1977, Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin. Possible role in the hormone’s effects on adenylate cyclase and the hexose monophosphate shunt. Arch. Biochem. Biophys. 184: 69–76.

    PubMed  CAS  Google Scholar 

  • Nakashima, K., Pontremoli, S., Horecker, B.L., 1969, Activation of rabbit liver fructose diphosphatase by coenzyme A and acyl carrier protein. Proc. Natl. Acad. Sci. USA 64: 947–951.

    PubMed  CAS  Google Scholar 

  • Netto, L.E.S., Chae, H.Z., Kang, S.-W., Rhee, S.G., Stadtman, E.R., 1996, Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. J. Biol.Chem. 271: 15315–15321.

    CAS  Google Scholar 

  • Nogoceke, E., Gommel, D.U., Kiess, M., Kalisz, H.M., Flohé, L., 1997, A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol. Chem. 378: 827–836.

    PubMed  CAS  Google Scholar 

  • Pedrajas, J.R., Miranda-Vizuete, A., Javanmardy, N., Gustafsson, J.A., Spyrou, G., 2000, Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J. Biol. Chem. 275: 16296–16301.

    PubMed  CAS  Google Scholar 

  • Phalen, T.J., Weirather, K., Deming, P.B., Anathy, V., Howe, A.K., van der Vlier, A., Jönsson, T.J., Poole, L.B., Heintz, N.H., 2006, Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J. Cell Biol. 175: 779–789.

    PubMed  CAS  Google Scholar 

  • Plishker, G.A., White, P.A., Cadman, E.D., 1986, Involvement of a cytoplasmic protein calcium-dependent potassium efflux in red blood cells. Am. J. Physiol. 251: C535.

    PubMed  CAS  Google Scholar 

  • Plishker, G.A., Chevalier, D., Seinsoth, L., Moore, R.B., 1992, Calcium-activated potassium transport and high molecular weight forms of calpromotin. J. Biol. Chem. 267: 21839–21843.

    PubMed  CAS  Google Scholar 

  • Pontremoli, S., Luppis, B., Traniello, S., Rippa, M., Horecker, B.L., 1965, Fructose diphosphatase from rabbit liver.IV. Sulfhydryl groups and their relation to the catalytic activity. Arch. Biochem. Biophys. 112: 1–15.

    Google Scholar 

  • Pontremoli, S., Traniello, S., Enser, M., Shapiro, S., Horecker, B.L.,1967, Regulation of fructose diphosphatase activity by disulfide exchange. Proc. Natl. Acad. Sci. USA 58: 286–293.

    PubMed  CAS  Google Scholar 

  • Poole, L.B., Ellis, H.R., 2002, Identification of cysteine sulfenic acid in AhpC of alkyl hydroperoxide reductase. Meth. Enzymol. 348: 122–136.

    PubMed  CAS  Google Scholar 

  • Posner, B.I., Faure, R., Burgess, J.W., Bevan, A.P., Lachance, D., Zhang-Sun, G., Fantus, I.G., Ng, J.B., Hall, D.A., Lum, B.S., et al., 1994, Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269: 4596–4604.

    PubMed  CAS  Google Scholar 

  • Rabilloud, T., Berthier, R., Vincon, M., Ferbus, D., Doubin, G., Lawrence, J.J., 1995, Early events in erythroid differentiation: accumulation of the acidic peroxiredoxin. Biochem. J. 312: 669–705.

    Google Scholar 

  • Radeke, H.H., Meier, B., Topley, N., Floge, J., Habermehl, G.G., Resch, K., 1990, Interleukin 1-alpha and tumor necrosis factor-alpha induce oxygen radical production in mesangial cells. Kidney Int. 37: 767–775.

    PubMed  CAS  Google Scholar 

  • Ralat, L.A., Manevich, Y., Fisher, A.B., Colman R.F., 2006, Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes. Biochemistry 45: 360–372.

    PubMed  CAS  Google Scholar 

  • Reynolds, C.M., Poole, L.B., 2001, Activity of one of two engineered heterodimers of AhpF, the NADH:peroxiredoxin oxidoreductase from Salmonella typhimurium, reveals intrasubunit electron transfer between domains. Biochemistry 40: 3912–3919.

    PubMed  CAS  Google Scholar 

  • Rhee. S.G, 1999, Redox signalling: hydrogen peroxides as intracellular messenger. Exptl. Molec. Med. 31: 53–59.

    CAS  Google Scholar 

  • Rhee. S.G., Chang. T.S., Bae. YS., Lee, S.R., Kang, S.W., 2003, Cellular regulation by hydrogen peroxide. J. Am. Soc. Nephrol. 14(8 Suppl 3):S211–215.

    CAS  Google Scholar 

  • Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.-S., Yang, K.-S., Woo, H.A., 2005, Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17 183–189.}

    PubMed  CAS  Google Scholar 

  • Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., Ichijo, H., 1998, Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17: 2596–2606.

    PubMed  CAS  Google Scholar 

  • Sarma, G.N., Nickel, C., Rahlfs, S., Fischer, M., Becker, K., Karplus, P.A., 2005, Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J. Mol. Biol. 346: 1021–1034.

    PubMed  CAS  Google Scholar 

  • Sasagawa, I., Matsuki, S., Suzuki, Y., Iuchi, Y., Tohya, K., Kimura, M., Nakada, T., Fujii, J., 2001, Possible involvement of the membrane-bound form of peroxiredoxin 4 in acrosome formation during spermiogenesis of rats. Eur J. Biochem. 268: 3053–3061.

    PubMed  CAS  Google Scholar 

  • Schmidt, A.K., Krauth-Siegel, R., 2002, Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Curr. Top. Med. Chem. 2:1239–1259.

    PubMed  CAS  Google Scholar 

  • Schmidt, A and Krauth-Siegel, RL (2002) Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Curr Top Med Chem:1239–1259.

    Google Scholar 

  • Schröder, E., Isupov, M.N., Naran, A., Littlechild, J.A., 1999, Crystallization and preliminary X-ray analysis of human thioredoxin peroxidase-B from red blood cells. Acta Cryst. D55: 536–538.

    Google Scholar 

  • Schröder, E., Littlechild, J.A., Lebedev, A.A., Errington, N., Vagin, A.A., Isupov, M.N., 2000, Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7Å resolution. Structure 8: 605–615.

    PubMed  Google Scholar 

  • Schröder, E., Ponting, C.P, 1998. Evidence that the peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Science 7: 2465–2468.

    PubMed  Google Scholar 

  • Schröder, E., Willis, A.C., Ponting, C.P., 1998, Porcine natural-killer enhancing factor-B: oligomerization and identification as a calpain substrate in vitro. Biochim Biophys. Acta 1383: 279–291.

    PubMed  Google Scholar 

  • Shau, H., Kim, A., 1994, Identification of natural killer enhancing factor as a major antioxidant in human red blood cells. Biochem. Biophys. Res. Commun. 199: 83–88.

    PubMed  CAS  Google Scholar 

  • Shau, H., Kim, A.T., Hedrick, C.C., Lusis, A.J., Tompkins, C., Finney, R., Leung, D.W., Paglia, D.E., 1997, Endogenous natural killer enhancing factor-B increases cellular resistance to oxidative stress. Free Rad. Biol. Med. 22: 497–507.

    PubMed  CAS  Google Scholar 

  • Sies, H., Gerstenecke, R.C., Menzel, H., Flohé, L., 1972, Oxidation in the NADP system and release of GSSG from hemoglobin-free perfused rat liver during peroxidatic oxidation of glutathione by hydroperoxides. FEBS Lett. 27: 171–175.

    PubMed  CAS  Google Scholar 

  • Söhling, B., Parther, T., Rucknagel, K.P., Wagner, M.A., Andreesen, J.R., 2001. A selenocysteine-containing peroxiredoxin from the strictly anaerobic organism Eubacterium acidaminophilum. Biol Chem. 382: 979–986.

    PubMed  Google Scholar 

  • Stacy, R.A., Munthe, E., Steinum, T., Sharma, B., Aalen, R.B., 1996, A peroxiredoxin antioxidant is encoded by a dormancy-related gener, Per1, expressed during late development in the aleurone and embryo of barley grains. Plant Mol. Biol. 31: 1205–1216.

    PubMed  CAS  Google Scholar 

  • Sztajer, H., Gamain, B., Aumann, K.D., Slomianny, C., Becker, K., Brigelius-Flohé, R., Flohé, L., 2001, The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J. Biol. Chem. 276: 7397–7403.

    PubMed  CAS  Google Scholar 

  • Tang, D.G., La, E., Kern, J., Kehrer, P., 2002, Fatty acid oxidation and signaling in apoptosis. Biol. Chem. 383: 425–442.

    PubMed  CAS  Google Scholar 

  • Tartaglia, L.A., Storz, G., Brodsky, M.H., Lai, A., Ames, B.N., 1990, Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredocind reductase and other flavoprotein disulfide oxidoreductases. J. Biol. Chem. 265: 10535–10540

    PubMed  CAS  Google Scholar 

  • Tetaud, E., Giroud, C., Prescott, A.R., Parkin, D.W., Baltz, D., Biteau, N., Baltz, T, Fairlamb, A.H., 2001, Molecular characterisation of mitochondrial and cytosolic trypanothione-dependent tryparedoxin peroxidases in Trypanosoma brucei. Mol. Biochem. Parasitol. 116: 171–183.

    PubMed  CAS  Google Scholar 

  • Toledano, M.B., Delaunay, A., Monceau, L., Tacnet, F., 2004. Microbial rm H2O2 sensors as archetypical redox signaling modules. TIBS. 29: 351–357.

    PubMed  CAS  Google Scholar 

  • Tovar, J., Cunningham, M.L., Smith, A.C., Croft, S.L., Fairlamb, A.H., 1998a, Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc. Natl. Acad. Sci. USA 95: 5311–5316.

    CAS  Google Scholar 

  • Tovar, J., Wilkinson, S., Mottram, J.C., Fairlamb, A.H., 1998b, Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol. Microbiol. 29: 653–660.

    CAS  Google Scholar 

  • Trujillo, M., Budde, H., Pineyro, M.D, Stehr, M., Robello, C., Flohé, L., Radi, R., 2004, Trypanosoma brucei and Trypanosoma cruzi tryparedoxin peroxidases catalytically detoxify peroxynitrite via oxidation of fast reacting thiols. J. Biol. Chem. 279: 34175–34182.

    PubMed  CAS  Google Scholar 

  • Ursini, F., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J., Flohé, L., 1999 Dual function of the selenoprotein PHGPx during sperm maturation. Science 285: 1393–1396.

    PubMed  CAS  Google Scholar 

  • Veal, E.A., Findlay, V.J., Day, A.M., Bozonet, S.M., Evans, J.M., Quinn, J., Morgan, B.A., 2004. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol. Cell. 15: 129–139

    PubMed  CAS  Google Scholar 

  • Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., Hidalgo, E., 2005, A cysteine-sulphinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102: 8875–8880.

    PubMed  CAS  Google Scholar 

  • Watabe, S., Hiroi, T., Yamamoto, Y., Fujioka, Y., Hasegawa, H., Yago, N., Takahashi, S.Y., 1997, SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur.J. Biochem. 249: 52–60.

    PubMed  CAS  Google Scholar 

  • Wilkinson, S.R., Prathalingam, S.R., Kelly, J.M., 2003, RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the African trypanosome. J. Biol. Chem. 278: 31640–31646.

    PubMed  CAS  Google Scholar 

  • Wilkinson, S.R., Temperton, N.J., Mondragon, A., Kelly, .M., 2000, Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. J. Biol. Chem. 275: 8220–8225.

    PubMed  CAS  Google Scholar 

  • Wood, Z., Schröder, E., Harris, J.R., Poole, L.B., 2003, Structure, mechanism and regulation of peroxiredoxins. TIBS 28: 32–40.

    PubMed  CAS  Google Scholar 

  • Yamamoto, T., Matsui, Y., Natori, S., Obinata, M., 1989, Cloning of a housekeeping gene (MER5) preferentially expressed in murine erythroleukemia cells. Gene 80: 337–343.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Bunn, H.F., 1999, Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respir. Physiol. 115: 239–247.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Flohé, L., Harris, J.R. (2007). Introduction. In: Flohé, L., Harris, J.R. (eds) Peroxiredoxin Systems. Subcellular Biochemistry, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6051-9_1

Download citation

Publish with us

Policies and ethics